Ein Thread, ist ein Thread, ist ein (virtueller) Thread.

Welcome

Java 19
Sept 20, 2022

sdk install java 19-open
openjdk 19 2022-09-20 build 19+36-2238

Concurrency ?
Parallelism?

B)

[
’e°"'c°d eacudemY‘com

E)

Cle [
c
e"codeacademy'

</, [\
9ncodeacademy-<’

c/ m
€ancodeacademy-©°

There is a lot to doin a Java Program

Image Credit Marcus Biel / cleancodeacademy

https://marcus-biel.com/java-craftsman-sticker/

There is a lot to do! And limited resources

Logging / Monitoring / Metrics
Garbage collection

e Process and answer requests e Developer Brain

e Compute e C(CPU/ Hyperthreading
e |/O: Read and write files e Memory

e Read from databases and network e /0

e Synchronization e Network

e Render e Disk

([J

o

History In Java

Been There - Seen That

Java 1.3 - 1998

Native Threads

Java 8 2014-2016 Java 19, 2022

CompletableFuture
Rx-Java

Reactive Streams
Reactor

e ' YRR Y @ - @ ®
Lava 1.1-1997 Lava 1.5-2004 Lava 1.7 2011 Izm 7-2018 Java 9
Green Threads Thread Pools / Executors ForkJoinPool

Flow
Parallel Streams

JEP 425 Virtual Threads
Preview

Kotlin Coroutines - Stable

A Thread

A Thread

e Asynchronous Unit of Execution

e Multiple Threads running inside a Process
e OneThread atatime ona CPU

e Inside a thread - synchronous execution

e Switching - Switch/Save Registers / Invalidate Caches ...
e Cheaper than process switching, HW support

e green, platform/native, virtual Threads

Green Threads vs. Native Threads

Native Threads

Green Threads

User Level Threads

Simulated Multithreading

Runs on single (LW)Process / CPU
Scheduled by VM, not OS

Lots of HW context switching
"slow"

Abandoned in Java 1.3
Management / State overhead

Mapped to all HW Threads (HT)

Limited to HW concurrency

blocking, synchronous execution

Since Java 1.3 (Solaris - 1.2)

Better on I/0O & context-switching
Faster than process based concurrency

Java Concurre
easier tha

1y

11t

1S

00ksS

Devil is in the details

(Brian Goetz - JCP book)

Options Today

Hello Threading World

Example Code & Run

new Thread().start()
ThreadPool/Executor
Reactive Streams/Reactor
Kotlin Coroutines

Loom - Virtual Threads

Lk =

Java Threads & Thread Pools

var t = new Thread(() -> System.out.println("Hello World"));
t.start();

t.join();

// new! Thread.Builder

var t = Thread.ofPlatform().start(
() -> System.out.println("Hello new World"));

t.join();

Thread Pools

try (var executor = Executors.newFixedThreadPool(5)) {
IntStream.range(@, 50).forEach(i -> {
executor.submit(() ->
System.out.println("Hello Platform Thread "+i+" "+Thread.currentThread())
)
})s

} // executor.close()

Thread Pools

// takes a long time
try (var executor = Executors.newFixedThreadPoo0l(10)) {
IntStream.range(@, 10 000).forEach(i -> {
executor.submit(() -> {
Thread.sleep(Duration.ofSeconds(1));
return 1i;
})s
})s

} // executor.close()

Parallel Streams

// parallel stream
IntStream.range(1,10).parallel()
.mapToObj(i -> "Hello World "+i)

.forEach(System.out::println);

Completable Future

// Completable Future

var cf = CompletableFuture.completedFuture("complex")
.thenApplyAsync(String: :toUppercCase)

.thenCombine(

CompletableFuture.completedFuture("CODE")
.thenApplyAsync(String: :toLowerCase),

(s1, s2) -> sl + s2);

cf.join()

Reactive Programming
Reactive Java, Reactor, RxJava, Akka

String key = "message";

Mono<String> r = Mono.just("Hello")
.flatMap(s -> Mono.deferContextual(ctx ->
Mono.just(s + " " + ctx.get(key))))
.contextWrite(ctx -> ctx.put(key, "World"));

StepVerifier.create(r).expectNext("Hello World").verifyComplete();

https://projectreactor.io/docs/core/release/reference/

Kotlin Coroutines

fun main() = runBlocking { // this: CoroutineScope
launch { doWorld() }
println("Hello")
}
// suspending function
suspend fun doWorld() {
delay(1000L)
println("World!")

https://kotlinlang.org/docs/coroutines-guide.html

Blocking vs. Non-Blocking

Blocking vs. Non-Blocking vs. Continuations

Blocking

linear program-flow
execute what you
wrote, easy to reason
blocks on intensive
operations

inefficient use of
resources
(utilized/blocked)
classical Java Threading

Non-Blocking

DSL for describing a
processing

underlying reactive engine
data flow

resource efficient

hard to reason, debug
unit-test, profile, maintain
large complex API

difficult to correlate
operations

RxJava, Reactive Streams,
Akka

Continuation

ability to capture
computation so far and
continue later

explicit continuations
(await, async, yield)
implicit continuations (on
entry-points to blocking
ops)

simpler API

hard work is in the
implementation

Kotlin, JS, Loom

Concurrency & Parallelism help us make
more efficient use of existing resources

Concurrency & Parallelism (in Java)

Concurrency vs. Parallelism

Concurrency

e Ability to execute many (different) tasks
and make progress on all of them
e Seemingly simultaneously (e.g. on 1 CPU)

Parallel Concurrent Execution

e Multiple tasks are executed concurrently
(at the same time) AND

e Multiple CPUs are used to execute tasks
in parallel

e Most common today

source:

Parallel Execution

e Utilize more than 1 CPU/Thread to
progress multiple tasks simultaneously

Parallelism

e Ability to divide and conquer a single
task into subtasks that can be executed
in parallel

https://jenkov.com/tutorials/java-concurrency/concurrency-vs-parallelism.html

oncurrency vs. Parallelism

-» Task 1

-» Task 2

Task - being split up into subtasks

T N |

» Thread 1

Task 2
CPU
» Thread 2
Task 3
» Thread 3
Task 4 5

» Thread 4

Parallel Execution Challenges

Context Switches / Caches / Branch Predictions
Race Conditions

Mutable data / visibility

Deadlocks

Starvation

Resource over-/ underutilization
Immutability / Ownership

Reasoning / Debugging / Logging
State-Management

Execution Depedencies

JEP 425: Virtual Threads (Preview)

Authors
Owner
Type

Scope
Status
Release
Component
Discussion
Effort
Reviewed by
Created
Updated
Issue

Summary

Ron Pressler, Alan Bateman

Alan Bateman

Feature

SE

Closed/Delivered

19

core-libs

loom dash dev at openjdk dot java dot net
XL

Alex Buckley, Brian Goetz, Chris Hegarty
2021/11/15 16:43

2022/08/10 15:58

8277131

Introduce virtual threads to the Java Platform. Virtual threads are lightweight
threads that dramatically reduce the effort of writing, maintaining, and observing
high-throughput concurrent applications. This is a preview API.

JEP 425 - Project Loom - openjdk.org/jeps /425

JEP 425 - Goals

Goals Non-Goals

Enable server applications written in the
simple thread-per-request style to
scale with near-optimal hardware
utilization.

Enable existing code that uses the
java.lang.Thread API to adopt
virtual threads with minimal
change.

Enable easy troubleshooting,
debugging, and profiling of virtual
threads with existing JDK tools.

It is not a goal to remove the traditional
implementation of threads, or to

Hent! . , isti
appheations to use virtual threads.

It is not a goal to ehange-the-basie
concurrency-meodel of Java.

It is not a goal to offer a nrew-data
parallelism-eenstruet in either the
Java language or the Java libraries. The
Stream API remains the preferred way
to process large data sets in parallel.

https://docs.oracle.com/en/java/javase/18/docs/api/java.base/java/util/stream/package-summary.html

What's in the cup?

What's in the sexcup’

Continuations internally in the JVM

Reimplementation of Networking /10 Code in JVM
lightweight Virtual Thread, same API as java.util.Thread
Thread.Builder

VirtualThreadExecutors

Auto-Closeable Excecutors

Structured Concurrency (StructuredTaskScope)

A virtual Thread

Vlrtua\ Thread

same, stable API as traditional thread (deprecations will be removed)
e handled differently during blocking operations
e lightweight (300 bytes) like a Runnable, VM can execute millions
e temporarily bound to a platform (carrier) thread
e on each blocking/parking operation -> Continuation yielding
e stackis copied to heap
e onresume, stack copied back and
e execution resumed on different carrier Thread

e uses a separate ForkJoinPool (FJP), to also prevent starving

-Djdk.defaultScheduler.parallelism=N

ava Virtual Threads

var threads =

IntStream.range(0,10) .mapToObj(i ->
Thread.ofVirtual().start(() -> {

System.out.println("Hello Virtual Thread

})).tolList();

for (Thread t
t.join();

threads) A

Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello

Virtual
Virtual
Virtual
Virtual
Virtual
Virtual
Virtual
Virtual
Virtual

Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread

OCoopPANMNMNNUVIEOW

+i+" "+Thread.currentThread());

VirtualThread[#10079]/runnable@ForkJoinPool-1-worker-18
VirtualThread[#10082]/runnable@ForkJoinPool-1-worker-17
VirtualThread[#10077]/runnable@ForkJoinPool-1-worker-16
VirtualThread[#10081]/runnable@ForkJoinPool-1-worker-15
VirtualThread[#10083]/runnable@ForkJoinPool-1-worker-17
VirtualThread[#10078]/runnable@ForkJoinPool-1-worker-17
VirtualThread[#10080]/runnable@ForkJoinPool-1-worker-17
VirtualThread[#10084]/runnable@ForkJoinPool-1-worker-19
VirtualThread[#10085]/runnable@ForkJoinPool-1-worker-18

Java Virtual Threads - Executor

try (var executor = Executors.newVirtualThreadPerTaskExecutor()) {
IntStream.range(@, 1 000 000).forEach(i -> {
executor.submit(() -> {
Thread.sleep(java.time.Duration.ofSeconds(1));
return i; // callable, throws Exception
})s
1)

} // executor.close() is called implicitly, and waits

Under the Hood

Start a new virtual Thread

Example: Echo Web-Server

// java --enable-preview --source 19 LoomServer.java
// echo -n 'Hello Loom' nc -n 127.0.0.1 2000
import java.io.*;

import java.net.*;

import java.util.concurrent.*;

public class LoomServer {
public static void main(String...args) throws IOException {
try (var ss = new ServerSocket(2000);
var pool = Executors.newVirtualThreadPerTaskExecutor()) {
while (true) {
var socket = ss.accept();
pool.execute(() -> {
try (var s = socket;
var in = s.getInputStream();
var out = s.getOutputStream()) {
byte b = -1;
while ((b = (byte)in.read()) != -1) {
out.write(b+1);
}
} catch(IOException ioe) {}
}s

Under The Hood

e Virtual Threads run on (different) Platform Threads

e They use a separate Fork Join Pool

e Instead of blocking (IO, networking, sleep, synchronization) they are
yielding control

e Blocking Code in the JVM refactored to use Continuations

e Continuations move stack from Platform Thread to Heap

e (Can pick up later on another thread

e Exceptwhen using addresses or native code

Example Thread.sleep

e Thread.sleep()
o VThread.sleepNanos()
m VThread.doSleepNanos()
e VTread.tryYield()
o VThread.yieldContinuation()

m unmount()

m Continuation.vield()

private void unmount() {
// set Thread.currentThread() to return the platform thread
Thread carrier = this.carrierThread;
carrier.setCurrentThread(carrier);
// break connection to carrier thread, synchronized with interrupt
synchronized (interruptLock) {
setCarrierThread(null);

}

carrier.clearInterrupt();

static final ContinuationScope VTHREAD_SCOPE =

new ContinuationScope("VirtualThreads");

@ChangesCurrentThread
private boolean yieldContinuation() {

boolean notifyJvmti = notifyJvmtiEvents;

// unmount
if (notifyJvmti) notifyJvmtiUnmountBegin(false);
unmount();
try {
return Continuation.yield(VTHREAD_SCOPE);
} finally {
// re-mount
mount();

if (notifyJvmti) notifyJvmtiMountEnd(false);

https://github.com/openjdk/jdk/blob/master/src/java.base/share/classes/java/lang/Thread.java#L449-L453
https://github.com/openjdk/jdk/blob/3fa6778ab2068a5dfc57773c8665f7f1827db30f/src/java.base/share/classes/java/lang/VirtualThread.java#L701-L724
https://github.com/openjdk/jdk/blob/3fa6778ab2068a5dfc57773c8665f7f1827db30f/src/java.base/share/classes/java/lang/VirtualThread.java#L653-L665
https://github.com/openjdk/jdk/blob/3fa6778ab2068a5dfc57773c8665f7f1827db30f/src/java.base/share/classes/java/lang/VirtualThread.java#L363-L376
https://github.com/openjdk/jdk/blob/3fa6778ab2068a5dfc57773c8665f7f1827db30f/src/java.base/share/classes/java/lang/VirtualThread.java#L345
https://github.com/openjdk/loom/blob/fibers/src/java.base/share/classes/jdk/internal/vm/Continuation.java#L349-L395

(Caveats or when does It nat work?

e when stack cannot be moved to heap e then the task stays pinned to a platform
e ifit contains memory addresses thread

(synchronized) -> use ReentrantLock! e to avoic exhaustion the FJP creates new
e calls c-code temporary platform threads
e Filel/O e can track with
e DNS (Windows) -Djdk.tracePinnedThreads=full

try (var execSvc = Executors.newVirtualThreadPerTaskExecutor()) {

execSvc.submit(() -> { o 1
. . !java
Ob] ect lock = new Ob] eCt(); java ——enable-preview ——source 19 -Djdk.tracePinnedThreads=full Main.java
synchronized(lock) { Note: Main.jéva uses pre\./iew fea‘Fures of Jav:.a SE 19.
Note: Recompile with —-Xlint:preview for details.
try { Thread[#31,ForkJoinPool-1-worker-1,5,CarrierThreads]
Thread y sleep (1@@) : java.base/java.lang.VirtualThread$VThreadContinuation.onPinned(VirtualThread.java:180)
. . java.base/jdk.internal.vm.Continuation.onPinned@(Continuation.java:398)
} catch (InterruptedExceptlon ie) { java.base/jdk.internal.vm.Continuation.yield@(Continuation.java:390)
J : 3 . java.base/jdk.internal.vm.Continuation.yield(Continuation.java:357)
throw new RUﬂtlmeEXCGpthﬂ(IE) 4 java.base/java.lang.VirtualThread.yieldContinuation(VirtualThread.java:370)
} java.base/java.lang.VirtualThread.parkNanos(VirtualThread.java:532)
} java.base/java.lang.VirtualThread.doSleepNanos(VirtualThread.java:713)
java.base/java.lang.VirtualThread.sleepNanos(VirtualThread.java:686)
}) ¥ java.base/java.lang.Thread.sleep(Thread.java:451)

} Main.lambda$main$@(Main.java:26) <== monitors:1
java.base/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:577)
java.base/java.util.concurrent.ThreadPerTaskExecutor$ThreadBoundFuture.run(ThreadPerTaskEx
java.base/java.lang.VirtualThread.run(VirtualThread.java:287)

example by A. Sundararajan java.base/java.lang.VirtualThread$VThreadContinuation.lambdanew@(VirtualThread.java:174)
java.base/jdk.internal.vm.Continuation.enter@(Continuation.java:327)
java.base/jdk.internal.vm.Continuation.enter(Continuation.java:320)

https://twitter.com/sundararajan_a

JDK Changes

e Large (#8166) touching 1333 files
Thread.Builder, virtualThreadPerTaskExecutor

e refactor all blocking/parking code to use Continuations for Virtual Threads

o Network I/0,
o Locks
o Thread.sleep

e replace c-code where possible with Java code (e.g. in Method ->
MethodHandles)
e not (yet):

o File I/0 (waiting for io_uring)
o synchronized, due to address usage

https://github.com/openjdk/jdk/pull/8166/files

Continuations on the long way to Loom

A Continuation?

A continuation

"A continuation is a callback function k that represents the current
state of the program's execution. More precisely, the continuation k is
a function of one argument, namely the value that has been
computed so far, that returns the final value of the computation after
the rest of the program has run to completion."

o

VI.-L .
OF
-— .
i-

Continuation in Pictures

import jdk.internal.vm.Continuation;
import jdk.internal.vm.ContinuationScope;

var scope = new ContinuationScope("scope");

var ¢ = new Continuation(scope, () -> {
System.out.println("Started");
Continuation.yield(scope);
System.out.println("Running");
Continuation.yield(scope);
System.out.println("Still running");

})s

System.out.println("Start");

int i=0;

while (!c.isDone()) {
c.run();

System.out.println("Running "+i+" result "+c.isDone());

i++;
}
System.out.println("End");

Start

Started

Running @ result false
Running

Running 1 result false
Still running

Running 2 result true
End

https://github.com/openjdk/loom/blob/fibers/src/java.base/share/classes/jdk/internal/vm/Continuation.java#L238

What is?

Structured Concurrency

EP 4728

https://openjdk.org/jeps/428

Launching Millions of Threads is no better
than GOTO

http://vorpus.org/blog/notes-on-structured-concurrency-or-go-statement-considered-harmful

Structured Concurrency (JEP 428)

Goals

Improve the maintainability, reliability, and
observability of multithreaded code.

Promote a style of concurrent programming
which can eliminate common risks arising from
cancellation and shutdown, such as thread
leaks and cancellation delays.

Non-Goals

It is not a goal to replace any of the
concurrency constructs in the
java.util.concurrentpackage, such as
ExecutorServiceand Future.

It is not a goal to define the definitive
structured concurrency API for Java. Other
structured concurrency constructs can be
defined by third-party libraries or in future JDK
releases.

It is not a goal to define a means of sharing
streams of data among threads (i.e., channels).
We might propose to do so in the future.

It is not a goal to replace the existing thread
interruption mechanism with a new thread
cancellation mechanism. We might propose to
do so in the future.

https://en.wikipedia.org/wiki/Channel_(programming)

Structured Concurrency (JEP 428) - TODO

with so many threads running you need management and control
structures

since JDK 5 no direct interaction with Threads but submit to
ExecutorService -> Future

ExecutorService is still unstructured

Multi-Thread Control structures are missing in Java (like Erlang/Akka)
o even if they exist in the business process
o no task->subtask relationships between threads
o every thread can read from a future or submit to an executor

Loom keeps this model -> Structure is missing
what happens when a (child or parent) thread fails?

Scope - virtual thread launcher

specialized, auto-closeable, short-lived execution-scope

like an executor, but uses virtual Threads and FJP

submit tasks to it (fork())

StructuredTaskScope<T>()

Future<T> future = scope.fork(task);

scope.join() -> returns when all tasks are complete

switch on future.state() (FAILED, RUNNING, SUCCESS, CANCELLED)

o future.resultNow() / future.exceptionNow()
e better with specialized implementations (first-one-wins or fail-fast)

StructuredTaskScope Example

try (var scope = new StructuredTaskScope<String>()) {
var future1 = scope.fork(task1);
var future2 = scope.fork(task2);
scope.join();
return switch (future1.state()) {
case Future.SUCCESS -> future1.resultNow();

case Future.FAILED -> futurel.exceptionNow();

API

https://download.java.net/java/early_access/loom/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.html

StructuredTaskScope.ShutdownOnSuccess

import jdk.incubator.concurrent.*;

try (var scope = new StructuredTaskScope.ShutdownOnSuccess<String>()) {

IntStream.range(0,10).forEach(i -»>
scope.fork(() -> String.valueOf(i)));

scope.join();
// first returning wins, exception if none did

System.out.println(scope.result());

e ShutdownOnFailure - same just for fail-fast AP

https://download.java.net/java/early_access/loom/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.html

Your own Scope

e toimplement your own "structured business logic"

e Subclass StructuredTaskScope

e override handleComplete(Future<T>)

e depending on future-state, do what you need to do

e s called concurrently, needs to use thread safe instance state
e custom result method, reduce state to a result (or Exception)

e Concern: Still a lot of multi-threaded technical infrastructure complexity

https://www.youtube.com/watch?v=2nOj8MKHvmw&t=2465s

Loom Debugging - Just regular!/

e Stacktrace in IDE-Debuggers (as expected)

e PatchesinJava Debug Wire Protocol JWDP) & Java Debugger Interface (JDI)
e Challenge - Display Millions of Threads

e Structured concurrency can help here too (Tree-Display)

e |FR should work - match allocations, method calls, etc. to virtual Threads

e Gapsin Thread API.

o list all running threads

o carrier <->virtual thread

https://wiki.openjdk.org/display/loom/Debugger+Support

Loom Demos &
Comparisions

githuh.com/ebarlas

Web-Backend
Game of Life
M persistent connections

7 ¢ S 'Y‘
s §~._j »9 b ol
’%"’Q N 1 oy - ‘

> » :
L \
RM"} }
4

Elliot Barlas - MicroHttp - LogMeln

https://github.com/ebarlas/project-loom-comparison

Performance (o

mparisor

Web-Server callir

o Backer

https://github.com/ebarlas/project-loom-comparison

public void handle(Request request, Consumer<Response> callback) {

executorService.execute(() -> callback.accept(doHandle(request)));

}
Response doHandle(Request request) {

var token = request.header("Authorization");

var authentication = sendRequestFor("/authenticate?token='

var authorization = sendRequestFor("/authorize?id=

var meetings = sendRequestFor("/meetings?id=" + authentication.userId(),

var headers = List.of(new Header("Content-Type", "application/json"));
return new Response(200, "OK", headers, Json.toJson(meetings));
}
<T> T sendRequestFor(String endpoint, Class<T> type)
throws IOException, InterruptedException {
URI uri = URI.create("http://%s%s".formatted(backend, endpoint));
var request = HttpRequest.newBuilder().uri(uri).GET().build();

HttpResponse<String> response = httpClient.send(request,

HttpResponse.BodyHandlers.ofString());

if (response.statusCode() != 200) {

throw new RuntimeException("error occurred contacting "+endpoint);

}

return Json.fromJson(response.body(), type);

+ token, ...);

+ authentication.userId(), ..);

Virtual Threads

Same old Executor (for bath Platform & Virtual Threads)

Unmount from carrier thread
Releases carrier thread to do other work

When response received, virtual thread
is submitted to scheduler, which will
mount on a carrier thread

Unmount virtual thread

Mount virtual thread

Unmount virtual thread

Mount virtual thread

| WebServer ’ Handler HttpClient
: 1 1
! Request _ ! :
1 Ll 1
1 1
! Send authentication request _ !
|
i

). I

)
1
i
1
1
!
i SR Useridentity |
i Send authorization request _ |
1 -
1
1
1
1
1
1
1
1
|
i | rniaial User authorities______ |]
| Send meetings request i
1
1
1
1
1
1
1
1
i
i)
: [— Meetings _______| i
1 1
| Response | :
i i i
1 1 1

www.websequencediagrams.com

WebServer

Browser (ab)
Web-Server calling
3x Backend (0,3s latency)
o Authentication
o Authorization
o Database
Platform Threads
Asynchronous
Virtual Threads

12000

10000

g &
g 8

Requests per second

&
H

2000

1750

1500

1250

1000

Seconds

750

500

3500

2500

Seconds

2000

1500

1000

Throughput
—— Platform Threads - —
Virtual Threads
—— Asynchronous.
2500 5000 7500 10000 12500 15000 17500 20000
‘Connections
Cumulative CPU Time
~— Platform Threads
Virtual Threads
= Asynchronous
2500 5000 7500 10000 12500 15000 17500 20000
Connections
Latency
—— Platform Threads
Virtual Threads
~— Asynchronous
2500 5000 7500 10000 12500 15000 17500 20000

Connections

Kilobytes

CPU%

600

500

00

300

100

le6 Physical Memory Used
— Platform Threads —
Virtual Threads =
— Asynchronous
2500 5000 7500 10000 12500 15000 17500 20000
Connections
167 Virtual Memory Size
—— Platform Threads
Virtual Threads
—— Asynchronous
2500 5000 7500 10000 12500 15000 17500 20000
Connections
CPU%
— Platform Threads
Virtual Threads
—— Asynchronous

2500

5000

7500

10000 12500 15000 17500 20000

Connections

HELIDON NIMA

Nima Test

java --enable-preview -jar nima/target/example-nima-blocking.jar

2022.09.22 02:36:05.204 Logging at initialization configured using classpath: /logging.properties

2022.09.22 02:36:05.394 [0x6e82e640] http://127.0.0.1:8080 bound for socket '@default’

2022.09.22 02:36:05.396 [0x6e82e640] async writes, queue length: 32

2022.09.22 02:36:05.403 Nima server started all channels in 8 milliseconds. 244 milliseconds since JVM startup. Java 19+36-2238

ab -n 10000 -c 8 http://127.0.0.1:8080/0ne

Concurrency Level: 8

Time taken for tests: 0.848 seconds

Complete requests: 10000

Requests per second: 11797.14 [#/sec] (mean)

Time per request: 0.678 [ms] (mean)

Time per request: 0.085 [ms] (mean, across all concurrent requests)
Transfer rate: 0.00 [Kbytes/sec] received

Connection Times (ms)
min mean[+/-sd] median max

Connect: (4] 0 0.0 0 (7]
Processing: (%] 0 0.0 %] %]
Waiting: (%] 0 0.0 %] %]
Total: 0 0 0.0 %] 1

Helidon Nima

Note: In either case, you should not
“obstruct” the thread. Obstruction is a

long-term, full utilization of the thread.

In a reactive framework this would
consume one of the event loop threads
effectively stopping the server. In
blocking (Nima) this may cause an
issue with the “pinned thread”. In both
cases this can be resolved by
off-loading the heavy load to a
dedicated executor service using
platform threads.

Socket listeners:

o Socket listeners are platform threads (there is a very small number of
these — one for each opened server socket)

HTTP/1.1:

e 1virtual thread to handle connection (including routing)

e 1virtual thread for writes on that connection (can be disabled so writes
happen on connection handler thread)

» All requests for a single connection are handled by the connection handler

HTTP/2.2:

e 1 virtual thread to handle connection

e 1virtual thread for writes on that connection (can be disabled so writes
happen on connection handler thread)

o 1virtual thread per HTTP/2 stream (including routing)

The virtual thread executor services use unbounded executors.

Performance comparable to Netty pipelined

Note: What we can see from these numbers
(and what is our goal with Nima) is that we
can achieve performance comparable to a
minimalist Netty server, while maintaining
a simple, easy to use programming model.

4,500,000
4,000,000
3,500,000

3,000,000

H Netty

®Nima
Helidon SE

® Dropwizard

2,500,000
2,000,000
1,500,000
1,000,000

500,000

0
Text, pipelines

List<String> responses = new LinkedList<>();

// list of tasks to be executed in parallel
List<Callable<String>> callables = new LinkedList<>();
for (int 1 = 0; i < count; i++) {

callables.add(() —> client.get().request(String.class));
}

// execute all tasks (blocking operation)
for (var future : EXECUTOR.invokeAll(callables)) {

responses.add(future.get());

// send it

res.send("Combined results: " + responses);

Gar

(SP - Communicati

e of Lif

e

19 Sec

lential Processes

https://github.com/ebarlas/game-of-life-csp

(SP - Nat possible in Java before

Channel (BlockingQueue<Boolean>) to exchange information
Grid - Channel<boolean[][]>
Each Cell has

O

@)
(@)
(@)

a virtual thread

channels for ticks and results (width x height x 2)
one channel per neighbour (~ width x height x 8)
aka a LOT of channels/queues

NAEN 2K
PR
RNIAEN AR
PRATRS

https://en.wikipedia.org/wiki/Communicating_sequential_processes

Cell's biological Clock - "Life”

private void run() {
while (true) {
tickChannel .take(); // wait for tick stimulus

// announce liveness to neighbors
outChannels.forEach(ch -> ch.put(alive)); e take / put->block -> suspend

e exchange via channel/queue

// receive liveness from neighbors e Write onIy to local state

int neighbors = inChannels.stream()
.map(Channel: : take)
.mapToInt(b -> b ? 1 : 0).sum();

// calculate next state based on game of life rules
alive = alive && neighbors == 2 || neighbors == 3;

// announce resulting next state
resultChannel .put(alive);

Conway's Game of Life

Resources
(there is a lat)

Resources

e |EP 425 -Virtual Threads e [oom Wiki

e |EP 428 - Structured Concurrency e [nside Java Loom

o |EP Café #12 - 10M Threads e |Loom Networking under the Hood

e |EP Café #13 - Loom Tutorial e InfoQ Interview Ron Pressler

e Heinz Kabutz Loom Video e State Of Loom Part 1

e JavaSpektrum Loom (me) e State Of Loom Part?2

e Loom Lab (Nicolai Parlog) e Helidon Nima

e Million Virtual Threads e Loom and Thread Fairness (Morling)
e News Grab BagJava 19 e Loom Comparison

e Virtual Threads PR e Structured Concurrency

https://openjdk.org/jeps/425
https://openjdk.org/jeps/428
https://inside.java/2022/07/07/jepcafe12/
https://www.youtube.com/watch?v=2nOj8MKHvmw
https://www.youtube.com/watch?v=N9BQuO5HEMc
https://github.com/jexp/blog/blob/gh-pages/adoc/articles/javaspektrum-loom-fibers.adoc
https://github.com/nipafx/loom-lab
https://github.com/rokon12/project-loom-slides-and-demo-code
https://www.youtube.com/watch?v=KuHhUDhIFYs
https://github.com/openjdk/jdk/pull/8166/files
https://wiki.openjdk.org/display/loom
https://inside.java/tag/loom
https://inside.java/2021/05/10/networking-io-with-virtual-threads/
https://www.infoq.com/podcasts/java-project-loom/
https://cr.openjdk.java.net/~rpressler/loom/loom/sol1_part1.html
https://cr.openjdk.java.net/~rpressler/loom/loom/sol1_part2.html
https://medium.com/helidon/helidon-n%C3%ADma-helidon-on-virtual-threads-130bb2ea2088
https://www.morling.dev/blog/loom-and-thread-fairness/
https://github.com/ebarlas/project-loom-comparison
https://vorpus.org/blog/notes-on-structured-concurrency-or-go-statement-considered-harmful/

NODES 22

Neo4j Online Developer
Education Summit

Save my Spot

Welcome to NODES 2022

Online Conference!

NOVEMBER 16TH AND 17TH, 2022

NODES 2022 is a free 24 hour virtual conference of technical presentations

by developers and data scientists solving problems with graphs.

What can you do?
Test! Provide feedback!

Don't use in production!

Thank You!

... I'd love to take questions!

