
Working Legacy Code with modern
Python tooling

Index

2

- Metrics

- Decision helpers

Meeting Reality Connascence and PAIN Tools

- Aim of Code

- Good Code

- Legacy Code

- Focus on value, business

- Automate boring stuff

What is the aim of working code?

3

Working software over
comprehensive
documentation

Responding to change
over following a plan

Our highest priority is
to satisfy the customer
through early and
continuous delivery of
valuable software

What is NOT the aim of working code?

4

Having the most
sophisticated
technology

“PEP 8 everyone” Show everybody that
you are really smart

Why work legacy code

5

People leave Things change Wanted: New features

What is legacy code?

6

Good code
• Passes the tests

• Reveals intention

• No duplication
• Fewest element

Hey baby, givin' it your all...
def oink_oink_oink_IlΙlll (ribbit_ααaαα)->int :
 oinks =0
 # Bada bing, bada boom
 for ribbit in ribbit_ααaαα :
 oinks +=ribbit # there's nothing like Miami's heat
 return oinks

https://blog.pragmaticengineer.com/bad-code/

What is legacy code?

7

Good code
• Passes the tests

• Reveals intention

• No duplication
• Fewest elements

Hey baby, givin' it your all...
def oink_oink_oink_IlΙlll (ribbit_ααaαα)->int :
 oinks =0
 # Bada bing, bada boom
 for ribbit in ribbit_ααaαα :
 oinks +=ribbit # there's nothing like Miami's heat
 return oinks

def sum_of(numbers: List[int]) -> int:
 return sum(numbers)

https://blog.pragmaticengineer.com/bad-code/

What is legacy code?

8

Good code
• Passes the tests

• Reveals intention

• No duplication
• Fewest elements

class Modulator(str, Enum):
 LINEAR = "linear"
 SQUARE = "square"
 CUBE = "cube"

 def __call__(self, v: float):
 if self is self.LINEAR:
 return v
 elif self is self.SQUARE:
 return math.sqrt(v)
 elif self is self.CUBE:
 return math.pow(v, 1.0 / 3)
 return v

def score(modulator: Modulator):
 if not modulator:
 modulator = Modulator.LINEAR

 # ...
 scores = 0.0
 stats = calc_stats(...)
 for v in stats:
 scores += modulator(v / stats["total"])
 # ...

What is legacy code?

9

Good code
• Passes the tests

• Reveals intention

• No duplication
• Fewest elements

def score() -> float:
 # ...
 sum_of(statistics(...))
 # ...

What is legacy code?

10

Good code Legacy code Culture
• Passes the tests

• Reveals intention

• No duplication
• Fewest elements

• Legacy as indicator

https://blog.pragmaticengineer.com/bad-code/

• Untested, hides intention

• Legacy != bad code

11

Service

DB

Widget 1 Widget 2
Our example

Open source

Six repositories
0 tests
0 documentation
manual deployment

New Features Wanted

Dev’s refused

12

Service

Widget 1 Widget 2
Our example

DB

What to do?

13

PEP 8 it! Recreate it from
scratch in XZY

Find metrics
• Methods

○ SOLID
○ Coupling

• Tools

Element A and B are connascent, if there is a change in A,
that requires a change in B

- generalization of coupling and cohesion

- many degrees of different severity

14

Connascence

Element A and B are connascent, if there is a change in A,
that requires a change in B

- Three Rules:

- Strength
- Distance
- Degree

- PAIN: Strength x Distance x Degree

15

Connascence

16

Tooling

https://www.e-booky.com

• Automate

• Mentor-like

• Focus on business logic

17

Good
● Name
● Type

Connascence 1st

__init__.py
from .collection import WIP as WIPCollection
from .material import WIP as WIPMaterial

app.py
def GET_APP_STATE_DB (input) :
 request=input[0]
 return request.app.state._db

18

Good

Connascence 1st

Renamed WIP in packages accordingly, no import ... as

def database(request: Request) -> Database:
 return request.app.state._db

● Name
● Type

19

Black
● Opinionated
● Pretty much

standard

Styling

def function(
 name,
 default=None,
 *args,
 variable="1123",
 a,
 b,
 c,
 employee,
 office,
 d,
 e,
 f,
 **kwargs
):
 """This is function is created to demonstrate black"""

string = "GeeksforGeeks"

j = [1, 2, 3]

20

Black
● Opinionated
● Pretty much

standard

Styling

def function(name, default=None, *args, variable="1123", a, b, c, employee, office, d, e, f, **kwargs):
 """This is function is created to demonstrate black"""

string = 'GeeksforGeeks'

j = [1,
 2,
 3]

Bad
● Position
● Value
● Meaning
● Algorithm
● Execution order

21

Connascence 2nd

Position interchangable
def _spellcheck(text, lang="de-DE")

_spellcheck("de-DE", "This is a text") # better not
_spellcheck(text="This is a text", lang="de-DE") # yes

Implicit code
MissingField = Field("MissingField",
 [
 (f.name, (f.value, f.field_type))
 for f in […,Attribute.NODE_ID,...
]
],
)

22

Ruff
● not as big as Flake8
● Customizable
● Written in Rust

Linting

__init__.py:17:89: E501 Line too long (112 > 88 characters)
__init__.py:5:19: F401 [*] ̀ WIPCollectioǹ imported but unused
ruff.py:70:17: F541 [*] f-string without any placeholders

__init__.py
from .collection import WIP as WIPCollection
from .material import WIP as WIPMaterial

https://github.com/astral-sh/ruff

23

Mypy
● static type

checker

Typing

mypy_test.py:42: error: "Field" has no attribute "NODE_ID" [attr-defined]
mypy_test.py:71: error: "ValueWeights" has no attribute "weights" [attr-defined]
mypy_test.py:36: error: Variable "Base" is not valid as a type [valid-type]
mypy_test.py:45: error: Invalid base class "Base" [misc]
...

MissingField = Field("MissingField",
 [
 (f.name, (f.value, f.field_type))
 for f in […,Attribute.NODE_ID,...
]
],
)

24

Pre-Commit hooks

https://pre-commit.com/

default_language_version:
 python: python3.9

repos:
 - repo: https://github.com/ambv/black
 rev: 22.3.0
 hooks:
 - id: black
 language_version: python3.9
 - repo: https://github.com/PyCQA/flake8
 rev: 4.0.1
 hooks:
 - id: flake8
 args: ["--max-line-length",
"140","--per-file-ignores"]
 - repo: https://github.com/jendrikseipp/vulture
 rev: 'v2.3'
 hooks:
 - id: vulture
 args: ["app", "--min-confidence", "61"]

Worst
● Timing
● Identity
● Manual Execution

25

Connascence 3rd

Six repositories

0 tests and little
documentation

Deployed manually

Testing

26

Lock your code first

- API Testing

- Core domain

Test good and bad cases

Ask questions to the code

client = TestClient(api())

def test_404():
 response = client.get("/scores")
 assert response.status_code == 404
 assert response.json() == {"errors": ["Not Found"]}

def test_get_quality():
 with mock.patch("app.api.source") as mocked_source:
 with mock.patch("app.api.collection"):
 mocked_source.return_value = Score(data=[], total={})

 response = client.get("/score")
 assert response.status_code == 422

 with pytest.raises(ValueError):
 client.get("/score", params={"node_id": ""})

More recommendations

27

Learn from others:

- Katas, Advent of Code

- Pair + Ensemble Programming

- GPT, CoPilot, AI …

- Use templates for project structure

Think about the person after you

Use an OpenAPI compliant framework/library: FastAPI

https://fastapi.tiangolo.com/

Summary

28

Legacy code How big is the
 PAIN

Tools
• Not necessarily bad code
• Often about

circumstances

● Automate
● Remove noise to talk

business

codecentric AG
Am Mittelhafen 14
48155 Münster

Telefon: +49 (0) 1732816649

Robert Meißner
Product Owner
robert.meissner@codecentric.de
www.codecentric.de

Creating the digital future together.

29

Creating the digital future together.

30

Legacy code
• Not necessarily bad code
• Often about circumstances

Connascence
• Enables metric driven development
• Pinpoints what to change about the

code

Tools
• Black - no more “PEP 8 them!”
• Ruff
• MyPy
• Pre-Commit
• FastAPI

• Focus on business Robert Meißner
Product Owner

robert.meissner@codecentric.de
www.codecentric.de

