
Martin Lippert, @martinlippert
September 2023

Upgrade to Spring Boot 3?
Spring Tools to the Rescue

Copyright © 2022 VMware, Inc. or its affiliates.



New Spring Boot releases all the time

● Many patch releases all the time

● New minor release every 6 month, sometimes new major releases

● It is super important to stay up-to-date

● But it is sometimes hard to always stay up-to-date

Where are we?



Release Notes + 
Migration Guides

● You have to read 
everything carefully

● You need to find out what 
needs to be changed for 
your project

● You need to apply all 
those changes manually

How to upgrade?

��



Let’s do something about this
(Spring Tools to the Rescue)



Let the user know

● Automatically check the versions that you use

● Show information about new versions and support ranges

Help the user to upgrade

● Migration guides written in “code”

● Looks at your project and applies necessary changes - AUTOMATICALLY

● Some limitations apply

What is new to Spring Tools?



No silver bullet

● The tools apply many changes, but not all of them

● The goal is to automate as much as possible

● There is no guarantee that you are done with the upgrade afterwards - probably 
additional manual steps needed

○ But this will improve with every tools release - of course… 😉

Limitations



Looking for feedback

Reminder: Everything that you will see is early days

● We are looking for feedback and suggestions

● If you want to get involved here, let us know



Live Demo
(Spring Version Validation & Upgrade Support)



What is OpenRewrite?

● “Open-source, semantic type aware search and transformation framework.”

● “OpenRewrite enables large-scale distributed source code refactoring for framework 
migrations, vulnerability patches, and API migrations”

● Automatically transform source code (for various purposes)

● https://docs.openrewrite.org/
● https://github.com/openrewrite

Based on initial work at Netflix to keep source code up-to-date. Sponsored now by Moderne.io.
The Moderne SaaS allows organizations to run search and transformations across hundreds of 
repositories (millions of lines of code) simultaneously and offer a free service for the OSS community 
at https://public.moderne.io/

Under the hood

https://docs.openrewrite.org/
https://github.com/openrewrite
https://public.moderne.io/


What can OpenRewrite be used for?

● Patching CVEs

● Migrate from Java 8 to Java 11 to Java 17…

● Migrate between framework versions

● Automatically adapt code to changed APIs

● …

● Works across various source file types (like Java Source Code, property files, YAML, 
other languages, etc.)

Purpose



How does OpenRewrite work internally?

● Step 1: Parse source files into AST

○ Type resolution

○ Keep formatting intact

● Step 2: Run visitors on ASTs to transform them

○ Visitors contain the logic what exactly to do for the refactoring, the migration, 
the code fix, etc.

● Step 3: Generate source changes

The internals



Recipes aggregate visitors

● Users deal with recipes

○ The AST visitors are an implementation detail

● Recipes are either

○ defined using YAML, or

○ implemented in Java

Recipes



Recipes can be written by anyone

● OpenRewrite comes with a huge set of basic transformation recipes pre-packaged 
and ready-to-use

○ https://docs.openrewrite.org/reference/recipes

● It is easy to use them and write custom recipes

● Community around recipes

● Packages could bring their own recipes

○ E.g. a library contains recipes to migrate client code to a new version of the 
library

The power behind it

https://docs.openrewrite.org/reference/recipes


Transforming the code

Running recipes via Maven or Gradle

● ./mvnw rewrite:discover - Lists all the available recipes

● ./mvnw rewrite:run - Runs the recipes configured as active (in the build 
config)

● ./mvnw rewrite:dryRun - Runs the recipes, but creates a patch file instead of 
changing the files directly



What we do inside the Spring Tools

List and run recipes from the UI

● Show the recipes that are available

● Let the user select the recipes

● Execute the recipes within the IDE



Authoring recipes

You can write your own recipes and try them

● A preference allows you to add your own recipes to the language server

● Write them in one workspace, test them in another

● No need to restart the IDE, just press “Refresh”



Live Demo
(writing your own recipes)



Another use case

Validations and Quick Fixes

● Let’s now push this beyond running recipes on projects

● Let’s combine this with validations/markers and code actions/quick fixes

● This goes beyond what OpenRewrite supports out-of-the-box, but it can be added on 
top



Validations and Quick Fixes

Something that looks like this

validation

code action / quick fix
(implemented as a recipe)



Live Demo
(additional cool new things)



OpenRewrite

● https://docs.openrewrite.org/

● https://github.com/openrewrite

IDE Integration

● Started as part of the Spring Tools: https://github.com/spring-projects/sts4/

● Independent of Spring Tooling in the future?

● Contact us on Twitter: http://twitter.com/springtools4/ 

Resources

https://docs.openrewrite.org/
https://github.com/openrewrite
https://github.com/spring-projects/sts4/
http://twitter.com/springtools4/


Thank you
@martinlippert

© 2022 Spring. A VMware-backed project.

(special thanks to Tyler van Gorder and Alex Boyko for their support and work on this)


