#]SD2024

Web Assembly
for Java Developers

Thomas Darimont
|dentity Tailor GmbH

@thomasdarimont

Sep 27th 2024

T_homas Darimont

- Managing Director | Identity Tailor ems+

- Focus on Digital Identities Q spring
- Open Source Enthusiast 5 CLOAK
- Spring Team Alumni

I OpenlD

- Official Keycloak Maintainer

- OpenlD Foundation Certification Team
- Java User Group Saarland Organizer

- Web Assembly Fanboy

23
(o

@thomasdarimont
thomas@identity-tailor.de

WEBASSEMBLY

R

WEBASSEMBLY

‘WebAssembly or Wasm is a binary
instruction format for a stack-based
"Virtual-machine."

‘Wasm is designed as a portable compilation
target for programming languages,
enabling deployment on the web
for client and server applications.”

Source Code WebAssembly Runtime on
Artefact target machine

Python Go Windows

Ruby i0OS

Java Linux Android

Source: (Slightly adjusted) https://b-nova.com/en/home/content/how-containerless-works-thanks-to-web-assembly-runtimes

https://b-nova.com/en/home/content/how-containerless-works-thanks-to-web-assembly-runtimes

Source (C)

(module

(func $add (param $a i32) (param $b i32) (result

int add(int a, int b) {
return a + b;

¥

local.get $a
local.get $b

i32.add)

00000000
00000010
00000020
00000030
00000040
00000050
00000060
00000070

00
80
6f
85
74
65
01
64

61
00
6e
80
86
8c
40
00

73
01
82
80
80
80
04

6d
40
80
80
80
80
6e

ob
02
80
00
80
80
61

00
01
80
80
00
00
6d

00
o1
00
02
o1
o1
65

00
01
01
80
00
86
86

04
01
00
02
03
80
80

74
08
06
o1
61
80
80

WAT (Web Assembly Text)

wat2wasm add.wat

79 70
66 75
6d 65
06 65
64 64
80 00
80 00

65
6e
6d
78
04
00
o1

87
63
6f
70
63
14
03

80
74
72
6f
6f
00
61

80
69
79
72
64
14
64

.. type.

| sss@epsan functi]|
(o] P memory |
I expor |
[TR add.cod|
% ez sxae it ss |
| .@.name....... ad|
|d.|

WASM (Web Assembly)

add.wasm

Benefits of Web Assembly

Open Standard
Wide adoption

Runs on “every” Platform

Open

Portable

eBPF
Lua
A

Safe

r Qy

Many languages Comp|le to Web Assembly

Source: (Slightly adjusted) https:/b-nova.com/en/home/content

ainerless-works-thanks-to-web-assembly-runtimes

Sandbox
Confined memory
Limit execution
Capability config

https://b-nova.com/en/home/content/how-containerless-works-thanks-to-web-assembly-runtimes

'“ BYTECODE
» ALLIANCE

About the Bytecode Alliance

The Bytecode Alliance is a nonprofit organization dedicated to creating secure new
software foundations, building on standards such as WebAssembly and
WebAssembly System Interface (WASI).

The Bytecode Alliance is committed to establishing a capable, secure platform that
allows application developers and service providers to confidently run untrusted
code, on any infrastructure, for any operating system or device, leveraging decades of
experience doing so inside web browsers.

We have a vision for a secure-by-default WebAssembly ecosystem for all platforms.

Web Assembly Use Cases *

Language
Interoperability

Write library once;,
use with other
languages

Figma, Google Earth,
Adobe Photoshop

*) outside the Browser

Web Assembly Use Cases *

Language
Interoperability

Write library once;,
use with other
languages

Figma, Google Earth,
Adobe Photoshop

Plugin
Systems

Flexible & secure
plugin systems

Envoy / Istio,
Kubewarden,
Minecraft, MS Flight
Simulator, Nginx,
Extism

*) outside the Browser

Embedded
Sandboxing

Guard yourself
against bugsin
3rd-party libraries

Firefox,
HttpServers

Containerization

Universal Runtime,
capability based
security model

Kurstlet, Hippo,
WasmCloud,
WasmEdge, Spin
Kube

Serverless

Minimal startup
time, maximum
isolation, Low

resource usage

CloudFlare
Workers,

AWS Lambda,
Fastly, Fermyon
Spin, Shopify

10

What's in for (Java) Developers?

Polyglot Programming

o Run code written in other languages in your JVM

o Allow programmers to provide features in preferred language
Plugin Systems

o Make existing programs extensible
o Replacement for Scripting

Efficient and fast Execution

o Fast cold start

o Interpreter / JIT / AOT

Security Built-in

o Sandbox model

o Execution with bounded Memory and CPU
o Explicit capability mapping (FS / NET / OS)

11

Java on Web Assembly

Compile “Java” to WebAssembly

® Bytecoder

O cross-compiles Java to WebAssembly that can be executed in the browser
e TeaVM
O has experimental support for browser-based WebAssembly

® JWebAssembly

O Translates JVM bytecode to WebAssembly, including Groovy, Clojure, and Kotlin
® CheerpJ

O Cheerpd is a WebAssembly-based Java Virtual Machine for the browser.

e Kotlin Wasm

O WebAssembly compilation target for Kotlin

13

https://github.com/mirkosertic/Bytecoder
https://github.com/konsoletyper/teavm
https://github.com/i-net-software/JWebAssembly
https://cheerpj.com
https://kotlinlang.org/docs/wasm-overview.html

Web Assembly on Java

Wa S m t i m e github.com/kawamuray/wasmtime-java

A fast and secure runtime for WebAssembly

A Bytecode Alliance project

e wasmtime-java unofficial Java Support

e Calls wasmtime (rust) native library via Java Native Interface (JNI)
e Low-level interface

H kawamuray / wasmtime-java Public L\ Notifications % Fork 29 v¢ Star 127

<> Code () lIssues 17 19 Pull requests 1 ® Actions [Projects @ Security [~ Insights

¥ master ~ # 11 Branches 20 Tags Q Gotofile <> Code ~ About

Java or JVM-language binding for
e kawamuray 0.19.0 b2a8468 - last year @ 87 Commits Wasmtime
0 .githubjworkflows support aarch64-linux for docker on macos (#53) last year java webassembly wasm
wasmtime
@ ci/docker support aarch64-linux for docker on macos (#53) last year
0 Readme
M examples Upgrade dependencies (wasmtime 7.0.0) (#52) last year

5% Apache-2 0 license

https://wasmtime.dev/
https://github.com/kawamuray/wasmtime-java
http://github.com/kawamuray/wasmtime-java

wasmtime-java Demo

String wasmLocation = WasmIO.locateWatFromClasspath("sum.wasm").toFile().getAbsolutePath();

try (var store = Store.withoutData(); //
store.engine(); //

var engine

var module

(module

(func $add (param $a i32) (param $b i32) (result i32)
local.get $a ;; push $a param on the stack
local.get $b ;; push $b param on the stack
i32.add) ;; pop $a and $b from the stack, compute sum,

(export ['calc"| (func $add))
)

Module.fromFile(engine, wasmLocation); //

var instance = new Instance(store, module, Collections.emptylList()); //

var func = instance.getFunc(store, name}"calc']).orElseThrow()) {

var results = func.call(store, WasmValType.I32.toWasmVal(3), WasmValType.I32.toWasmVal(4));

var result = results[0];

System.out.printf("Result: %s", result.i32());

16

Extism Universal Plug-in System extismora | EXTISM

Call ® code from your <% apps.

The cross-language framework for building with WebAssembly

Read the docs Java SDK

Quickly embed into officially supported languages:

P @ @ & co x & B - 7.‘2 W
& ¢ 4 ®

Easy to Use Secure by Default Available Everywhere
Leveraging the power and portability of Don't worry about what some plug-in code might Our flexible architecture uniquely allows Extism
WebAssembly, Extism is an off-the-shelf plug-in do to your program. Extism is built with security to run almost anywhere, with idiomatic Host
system just a library import away. Ship in days, as a core principle, and fully sandboxes the SDKs for Python, Node, Ruby, Rust, Go, PHP, 17

not weeks or months. execution of all plug-in code. C/C++, OCaml, & more.

https://extism.org

Extism EXTISM

e PDK (Plugin SDK)

Wrapper around wasmtime via JNA
Support for WASI (Web Assembly System Interface)

e Flexible Data-Exchange
Glue code for Data-exchange between Host and WASM module as JSON

e Easyto Use

Leveraging the power and portability of WebAssembly, Extism is an off-the-shelf
plug-in system just a library import away. Ship in days, not weeks or months.

e Secure by Default

Don't worry about what some plug-in code might do to your program. Extism is built
with security as a core principle, and fully sandboxes the execution of all plug-in
code.

18

https://wasmtime.dev

Use-cases of a plug-in system

Adding functionality to command-line tools

Enabling users to "'mod" a game

Simplify "webhooks" to run event-driven logic on the server
User-defined functions in a database

No-code application extensions

Content management system extensions

19

Extism Plugin Java SDK Demo

public class ExtismGoVowels { Thomas Darimont *
public static void main(String[] args) { Thomas Darimont *
var source = new PathWasmSource(name: "code", path: "demos/extism-demo/wasm/vowels/go/vowels.wasm", hash: null)
try (var plugin = new Plugin(new Manifest(source), withWASI: true, functions: null)) {

String output = plugin.call(functionName: "count_vowels", input: "JugSaxony");
System.out.println(output);

20

code.wasm

Compiled with
tinygo to WASM

import (
—— "strconv"
—— "github.com/extism/go-pdk"

// build via

// tinygo build -0 code.wasm -target wasi code.go

//export - count_vowels
func count_vowels() int32 {|
—— input := pdk.Input()

-count := 0
—— for _, a := range input {
—— ——switch a {
case- "A"'; "IV "EY,; 0" WY vt g ety Y
-count++
default:
1}
—}

output := "{"count": ~ + strconv.Itoa(count) +
——mem := pdk.AllocateString(output)

pdk.OutputMemory(mem)
return 0

func main() {}

3

21

https://tinygo.org

github.com/dylibso/chicory

Chicory Runtime

Tests AOT | 27877 success, 0 skip, 0 failures, 0 errors, 27877 total

Tests Interpreter | 27877 success, 0 skip, 0 failures, 0 errors, 27877 total

Tests WASI 49 success, 0 skip, O failures, 0 errors, 49 total
zulip [join chat

Chicory is a JVM native WebAssembly runtime. It allows you to run WebAssembly
programs with zero native dependencies or JNI. Chicory can run Wasm anywhere
that the JVM can go. It is designed with simplicity and safety in mind. See the
development section for a better idea of what we are trying to achieve and why.

Reach out to us: Chicory is very early in development and there will be rough
edges. We're hoping to talk to some early adopters and contributors before we
formally announce it a beta to the world. Please join our team Zulip chat with this
invite link if you're interested in providing feedback or contributing. Or just
keeping up with development.

22

https://github.com/dylibso/chicory

Chicory @

Pure JVM native Web Assembly Runtime

nitiated by the folks behind the Extism project
nspired among others by wazero (zero deps Go Wasm RT)
Many attempts to bring WASM to the JVM

o Implementing the WebAssembly Spec is hard work!
o Chicory = Joint forces of many WASM & JVM enthusiasts

23

https://wazero.io

Chicory - a pure Java WASM Runtime ... but why?

e Native WebAssembly Runtimes
o e.g. wasmtime, wasmedge, wasmer
o Extremely performant (fast start, small memory footprint)
o Only for a specific platform
o Require native library

e JVM based “native” Runtimes
o Can leverage JVM JIT
o Require no native libraries
o Provide Sandbox within JVM boundaries
o Easier to interface with

https://wasmtime.dev
https://wasmedge.org
https://wasmer.io

Chicory Goals / Non-Goals

e Goals

O

O O O O

Be as safe as possible

Willing to sacrifice performance for safety and simplicity

Wasm execution in every JVM environment without native code

Fully support the core Wasm spec

Make integration with Java (and other languages) easy and idiomatic

e Non-Goals

O

O

O

Be a standalone runtime
Be the fastest runtime
Be the right choice for every JVM project

25

Chicory Current State

Current Version: 0.0.12

Highly motivated & determined Team :)

Functional Web Assembly Interpreter

27k+ (1) Web Assembly 1.0 Spec Tests passing
Support for WAT (text) and WASM (binary)

Initial support for AOT Compilation to JVM Bytecode
... it can already run some complex applications

API still in flux

26

https://github.com/WebAssembly/spec/tree/main/test/core

Executing WASM Functions with Chicory

import
import
import

import

public

com.dylibso.chicory.runtime.ExportFunction;
com.dylibso.chicory.runtime.Module;
com.dylibso.chicory.wasm.types.Value;

java.nio.file.Path;

class ChicoryAddDemo {

public static void main(String[] args) {

Path.of(first: "demos/chicory-demo/wasm/add/rust/add.wasm");
Module.builder(wasmPath) .build().instantiate();

var wasmPath

var instance

ExportFunction addFunc = instance.export(name: "add");

valuel[] input = {valuve.i32(data: 3), Value.i32(data: 5)};
Value[] output = addFunc.apply(input);

System.ovt.println(output[6].asLong());

27

Calling Java Function from WASM with Chicory

public class ChicoryHostFunctionDemo {

|
public static void main(String[] args) { A”OW WASM to Ca” a Java MethOd

called from web assembly!

var func = new HostFunction((Instance instance, Value... inputs) -> {

read message from WASM-instance
var len = inputs[0].asInt();
var offset = inputs[1].asInt();

var message = instance.memory().readString(offset, len);

System.ovt.printf("### %s%n", message);
return null;

}, moduleName: "console", fieldName: "log", List.of(ValueType.I32, ValueType.I32), List.of());

var instance = Module.builder(Path.of(first: "demos/chicory-demo/wasm/log/logger.wasm")).build()
.withHostImports(new HostImports(new HostFunction[]{func})) // expose func to WASM runtime
.instantiate();

var logIt = instance.export(name: "logIt");

/ o ~n717 o - woh recomhdi i1/ Wels)
this calls a web assemdoly junction

logIt.apply(valve.i32(data: 5)); // Prints the message helleo world 5 times

“That’s all quite low-level... can you do more than
adding numbers or logging strings?”

29

Evaluating Open Policy Agent Policies in Java ‘

Open Policy Agent

Open Policy Agent (OPA)

CNCF Project

Open Source is a Policy Engine written in Go

Rego Language for defining Policies

Policy Evaluation (usually) via Sidecar / API calls
..but policies can be compiled to WASM &

.. how about executing policies directly in the JVM?
PoC by the great Andrea Peruffo

30

https://www.openpolicyagent.org/
https://github.com/andreaTP

[0 README

Execute WASM OPA Policies with Chicory

i

github.com/andreaTP/opa-chicory

) cI passing‘\ JitPack 'main-9931be414b-1

Open Policy Agent WebAssembly Java SDK
(experimental)

This is an SDK for using WebAssembly (wasm) compiled Open Policy Agent policies with Chicory, a pure Java
Wasm interpreter.

Initial implementation was based on Open Policy Agent WebAssemby NPM Module and Open Policy Agent
Ebassembly dotnet core SDK

Why

We want fast in-process OPA policies evaluations, and avoid network bottlenecks when using opa-java.

31

http://github.com/andreaTP/opa-chicory
http://github.com/andreaTP/opa-chicory

Meet Chicory,
exploit the power

of WebAssembly
on the server side!

TOOLS-IN-ACTION
(INTERMEDIATE LEVEL)

Monday from 18:20 - 18:50

Room 6

RELATED

A better Jupyter Experience for
Java Developers - JTaccuino

unveiled

Run your favorite games
everywhere with WASM: the

BlazorDoom use case

Supercharge your Java Applications

with Python!

Test Automation with Selenium 5

and Java

SCHEeEDULE

WebAssembly is a rapidly emerging technology that enables the execution of code
written in various languages while providing strong sandboxing and safety guarantees.
Initially developed for the web to enhance browser capabilities, developers soon
recognized the potential of reusing Wasm modules in server-side applications. wazero,
a native Go runtime for Wasm, played a pivotal role in showcasing the versatility and
power of this solution. With its widespread adoption and integration into diverse
applications, wazero demonstrated the value of using Wasm modules beyond the web
environment.

Inspired by the goals of wazero, we launched Chicory, a pure Java interpreter, with
zero dependencies, for Wasm. Chicory empowers developers to load and execute
Wasm modules with fine-grained control over their interactions with the system and
memory allocation. Notably, Chicory seamlessly integrates with barebone JVM
runtimes, eliminating any system dependencies.

In this presentation, we will explore the exciting possibilities that Chicory offers for the
JVM ecosystem. Through practical, real-world examples, we will showcase how
Chicory can be seamlessly integrated into your application, enabling you to run Wasm
programs within minutes. Additionally, we will discuss the various approaches to
designing integrations, exploring the trade-offs associated with each option.

! ANDREA PERUFFO X

(ﬁ’ Red Hat
- o With nearly two decades of coding experience, I'm fueled by passion as |

. continue to type away daily.
As a Principal Software Engineer at Red Hat, | actively contribute to diverse
Open Source projects, driven by both personal fulfillment and professional
advancement. My not-so-secret passion lies in programming languages,
developer tools, compilers, and beyond. Come and spot me on a project near
you!

SPEAKERS

Can Chicory run DOOM?

33

Can Chicory run DOOM? Oh yes!

Rust Doom Port
Compiled to WASM
Demo for running Doom in the browser

Interfaces with Host Environment (Browser)
o Attach to Browser Window

o Handle Key events

o Draw raw Framebuffer onto Canvas

e How about replacing the Browser bindings with...

O JFrame
O Swing EventListener

o Draw to a Buffered Image

34

WASM Doom on Chicory last year...

v tom@neumann:-/dev/repos/gh/thomasdarimont/wasm-dev/doo... Q =

@net in ~/dev/repos/gh/thomasdarimont/wasm-dev/doom-chicory (®)
$ java -Xssdm -jar target/doom-wasm-l.O-SNAPSHOT-)ar-wlth-dependenc'les.Jarl

https://docs.google.com/file/d/1qb0zHt7wjSkVt3mK3TLTMfTWfBNdLPeq/preview

WASM Doom on Chicory now with AOT

v tom@neumann:~/dev/repos/gh/thomasdarimont/wasm-dev/doom-chicory Q = = o X

@neumann ~/dev/repos/gh/thomasdarimont/wasm-dev/doom-chicory ()

s il

https://docs.google.com/file/d/1RZXs5an56IzPuRK3Daditz3FCNJ3dmn0/preview

Doom on Chicory

https://github.com/thomasdarimont/doom-chicory/tree/poc/aot

mvh clean verify

java -Dchicory.aot=true -jar ./target/doom-*-SNAPSHOT-jar-with-dependencies.jar

37

https://github.com/thomasdarimont/doom-chicory/tree/poc/aot

Doom on Chicory

ﬂ
SOFTYARE

ISl 149 -

=N F =

Doom on Chicory

= =
"
.
]
i .
M.
L]

EULL 180 - Z00

=HEL
Fiohl
IZELL

all -« &l
all ~ 5l
00 -~ 300

Summary

e Web Assembly support on the JVM is here to stay!
e Many powerful integration options available

e JVM native implementations on the rise!

e Better developer experience will be a game changer

e Web Assembly has potential beyond the browser!

40

#]SD2024

Web Assembly

for Java Developers

Thank you!
Code & Slides

github.com/thomasdarimont/javawasm-talk

@thomasdarimont
Sep 26th 2024

https://github.com/thomasdarimont/javawasm-talk/tree/conferences/2024voxxeddayslu

