
Web Assembly
for Java Developers

Thomas Darimont
Identity Tailor GmbH

@thomasdarimont

Sep 27th 2024

Thomas Darimont

• Managing Director | Identity Tailor GmbH

• Focus on Digital Identities
• Open Source Enthusiast
• Spring Team Alumni
• Official Keycloak Maintainer
• OpenID Foundation Certification Team
• Java User Group Saarland Organizer
• Web Assembly Fanboy

@thomasdarimont
thomas@identity-tailor.de

2

3

”WebAssembly or Wasm is a binary
instruction format for a stack-based

"Virtual-machine."

”Wasm is designed as a portable compilation
target for programming languages,

enabling deployment on the web
for client and server applications.”

4

Source: (Slightly adjusted) https://b-nova.com/en/home/content/how-containerless-works-thanks-to-web-assembly-runtimes

5

https://b-nova.com/en/home/content/how-containerless-works-thanks-to-web-assembly-runtimes

(module
 (func $add (param $a i32) (param $b i32) (result i32)
 local.get $a
 local.get $b
 i32.add)
 …
)

int add(int a, int b) {
 return a + b;
}

WAT (Web Assembly Text)

WASM (Web Assembly)

add.wasm 6

Source (C)

wat2wasm add.wat

Benefits of Web Assembly
Runs on “every” Platform

Sandbox
Confined memory

Limit execution
Capability config

Many languages compile to Web Assembly

Open Standard
Wide adoption

Source: (Slightly adjusted) https://b-nova.com/en/home/content/how-containerless-works-thanks-to-web-assembly-runtimes

7

https://b-nova.com/en/home/content/how-containerless-works-thanks-to-web-assembly-runtimes

8

Language
Interoperability

Plugin
Systems

Embedded
Sandboxing

Containerization Serverless

Write library once;
use with other
languages

Flexible & secure
plugin systems

Guard yourself
against bugs in
3rd-party libraries

Universal Runtime,
capability based
security model

Minimal startup
time, maximum
isolation, Low
resource usage

Figma, Google Earth,
Adobe Photoshop

Envoy / Istio,
Kubewarden,
Minecraft, MS Flight
Simulator, Nginx,
Extism

Firefox,
HttpServers

Kurstlet, Hippo,
WasmCloud,
WasmEdge, Spin
Kube

CloudFlare
Workers,
AWS Lambda,
Fastly, Fermyon
Spin, Shopify

Web Assembly Use Cases *

*) outside the Browser
9

Language
Interoperability

Plugin
Systems

Embedded
Sandboxing

Containerization Serverless

Write library once;
use with other
languages

Flexible & secure
plugin systems

Guard yourself
against bugs in
3rd-party libraries

Universal Runtime,
capability based
security model

Minimal startup
time, maximum
isolation, Low
resource usage

Figma, Google Earth,
Adobe Photoshop

Envoy / Istio,
Kubewarden,
Minecraft, MS Flight
Simulator, Nginx,
Extism

Firefox,
HttpServers

Kurstlet, Hippo,
WasmCloud,
WasmEdge, Spin
Kube

CloudFlare
Workers,
AWS Lambda,
Fastly, Fermyon
Spin, Shopify

Web Assembly Use Cases *

*) outside the Browser
10

What’s in for (Java) Developers?

● Polyglot Programming
○ Run code written in other languages in your JVM
○ Allow programmers to provide features in preferred language

● Plugin Systems
○ Make existing programs extensible
○ Replacement for Scripting

11

● Efficient and fast Execution
○ Fast cold start
○ Interpreter / JIT / AOT

● Security Built-in
○ Sandbox model
○ Execution with bounded Memory and CPU
○ Explicit capability mapping (FS / NET / OS)

Java on Web Assembly

12

Compile “Java” to WebAssembly

13

● Bytecoder

○ cross-compiles Java to WebAssembly that can be executed in the browser

● TeaVM

○ has experimental support for browser-based WebAssembly

● JWebAssembly

○ Translates JVM bytecode to WebAssembly, including Groovy, Clojure, and Kotlin

● CheerpJ

○ CheerpJ is a WebAssembly-based Java Virtual Machine for the browser.

● Kotlin Wasm
○ WebAssembly compilation target for Kotlin

https://github.com/mirkosertic/Bytecoder
https://github.com/konsoletyper/teavm
https://github.com/i-net-software/JWebAssembly
https://cheerpj.com
https://kotlinlang.org/docs/wasm-overview.html

Web Assembly on Java

14

● wasmtime-java unofficial Java Support
● Calls wasmtime (rust) native library via Java Native Interface (JNI)
● Low-level interface

15

github.com/kawamuray/wasmtime-java

https://wasmtime.dev/
https://github.com/kawamuray/wasmtime-java
http://github.com/kawamuray/wasmtime-java

wasmtime-java Demo

16

17

Extism Universal Plug-in System

Java SDK

extism.org

https://extism.org

Extism

● PDK (Plugin SDK)
Wrapper around wasmtime via JNA
Support for WASI (Web Assembly System Interface)

● Flexible Data-Exchange
Glue code for Data-exchange between Host and WASM module as JSON

18

● Easy to Use
Leveraging the power and portability of WebAssembly, Extism is an off-the-shelf
plug-in system just a library import away. Ship in days, not weeks or months.

● Secure by Default
Don't worry about what some plug-in code might do to your program. Extism is built
with security as a core principle, and fully sandboxes the execution of all plug-in
code.

https://wasmtime.dev

Use-cases of a plug-in system

● Adding functionality to command-line tools
● Enabling users to "mod" a game
● Simplify "webhooks" to run event-driven logic on the server
● User-defined functions in a database
● No-code application extensions
● Content management system extensions

19

Extism Plugin Java SDK Demo

20

code.wasm

Compiled with
tinygo to WASM

21

https://tinygo.org

22

github.com/dylibso/chicory

https://github.com/dylibso/chicory

Chicory

● Pure JVM native Web Assembly Runtime
● Initiated by the folks behind the Extism project
● Inspired among others by wazero (zero deps Go Wasm RT)

● Many attempts to bring WASM to the JVM
○ Implementing the WebAssembly Spec is hard work!
○ Chicory = Joint forces of many WASM & JVM enthusiasts

23

https://wazero.io

Chicory - a pure Java WASM Runtime ... but why?

24

● Native WebAssembly Runtimes
○ e.g. wasmtime, wasmedge, wasmer
○ Extremely performant (fast start, small memory footprint)

○ Only for a specific platform
○ Require native library

● JVM based “native” Runtimes
○ Can leverage JVM JIT
○ Require no native libraries
○ Provide Sandbox within JVM boundaries
○ Easier to interface with

https://wasmtime.dev
https://wasmedge.org
https://wasmer.io

Chicory Goals / Non-Goals

● Goals
○ Be as safe as possible
○ Willing to sacrifice performance for safety and simplicity
○ Wasm execution in every JVM environment without native code
○ Fully support the core Wasm spec
○ Make integration with Java (and other languages) easy and idiomatic

● Non-Goals
○ Be a standalone runtime
○ Be the fastest runtime
○ Be the right choice for every JVM project

25

Chicory Current State

● Current Version: 0.0.12
● Highly motivated & determined Team :)
● Functional Web Assembly Interpreter
● 27k+ (!!!) Web Assembly 1.0 Spec Tests passing
● Support for WAT (text) and WASM (binary)
● Initial support for AOT Compilation to JVM Bytecode
● … it can already run some complex applications
● API still in flux

26

https://github.com/WebAssembly/spec/tree/main/test/core

Executing WASM Functions with Chicory

27

Calling Java Function from WASM with Chicory

28

Allow WASM to call a Java Method!

“That’s all quite low-level… can you do more than
adding numbers or logging strings?”

29

Evaluating Open Policy Agent Policies in Java

30

● Open Policy Agent (OPA)
● CNCF Project
● Open Source is a Policy Engine written in Go
● Rego Language for defining Policies
● Policy Evaluation (usually) via Sidecar / API calls
● …but policies can be compiled to WASM 🤓
● … how about executing policies directly in the JVM?
● PoC by the great Andrea Peruffo

https://www.openpolicyagent.org/
https://github.com/andreaTP

Execute WASM OPA Policies with Chicory

31

github.com/andreaTP/opa-chicory

http://github.com/andreaTP/opa-chicory
http://github.com/andreaTP/opa-chicory

32

Can Chicory run DOOM?

33

Can Chicory run DOOM? Oh yes!

● Rust Doom Port
● Compiled to WASM
● Demo for running Doom in the browser
● Interfaces with Host Environment (Browser)

○ Attach to Browser Window
○ Handle Key events
○ Draw raw Framebuffer onto Canvas

● How about replacing the Browser bindings with…
○ JFrame
○ Swing EventListener
○ Draw to a Buffered Image

34

WASM Doom on Chicory last year…

35

https://docs.google.com/file/d/1qb0zHt7wjSkVt3mK3TLTMfTWfBNdLPeq/preview

WASM Doom on Chicory now with AOT

36

https://docs.google.com/file/d/1RZXs5an56IzPuRK3Daditz3FCNJ3dmn0/preview

Doom on Chicory

https://github.com/thomasdarimont/doom-chicory/tree/poc/aot

mvn clean verify

java -Dchicory.aot=true -jar ./target/doom-*-SNAPSHOT-jar-with-dependencies.jar

37

https://github.com/thomasdarimont/doom-chicory/tree/poc/aot

38

39

Summary

● Web Assembly support on the JVM is here to stay!

● Many powerful integration options available

● JVM native implementations on the rise!

● Better developer experience will be a game changer

● Web Assembly has potential beyond the browser!

40

Web Assembly
for Java Developers

@thomasdarimont
Sep 26th 2024

Thank you!

Code & Slides
github.com/thomasdarimont/javawasm-talk

https://github.com/thomasdarimont/javawasm-talk/tree/conferences/2024voxxeddayslu

