‘Give the agpéa’ém;g
developer a code kata!

What the heck is
S@ftwa?e Ca‘aft{gmamhep??

\F-M'

‘-{i' \ E t‘u L, “f"\\ "\ l” “ ”
%énjamin Nothdurft 2019-01-17 at jugsaxony.org
Sandra Parsick Martin-Luther-Universitat Halle- Wlttenber ’

||| SRREBELRLEEESEEREEEL Qi L

- H?

\
J Benjamin Nothdurft

@ codecentric

LARELEL

Sandra Parsick

Freelancer

i e

ad/ || AR

Agenda

Briet History - 10"

Current State - 5"

Dojo & Katas - 25"
Clean Code - 5"

Disclaimer: Thanks to our fellow crafters!
@MarcoEmrich / @DavidVoelkel

https://twitter.com/marcoemrich
https://twitter.com/davidvoelkel

=

B —a

Software Development

ENG\NEERLING-

CUART

Today we know software development is a mixture out
of craft, research and engineering!

However it was not always like this...

1999-2001

The ,
Pracmatic gOftW&t’C
Programmer Craftsmanship
V) The New
Imperative

,
1 1O (AN} 1
) 1a I

Andrew Hunt

David Thomas Pete McBreen
Foreword by Dave Thomas

by Ward (

¢ |dea in the 90s: software factories for
automated software development
e First try: Engineering as craft!

2001 - Birth of Agile

Manifesto for Agile Software Development

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

Kent Beck James Grenning Robert C. Martin
Mike Beedle Jim Highsmith Steve Mellor
Arie van Bennekum Andrew Hunt Ken Schwaber
Alistair Cockburn Ron Jeffries Jeff Sutherland
Ward Cunningham Jon Kern Dave Thomas
Martin Fowler Brian Marick

e Agile reaches from Scrum (project view) to XP (technical view)
e Focuses however strongly on project process!
e Technical excellence largely neglected.

2008 - Agile Hangover

Keynote from Uncle Bob:

e 5 principles to "craftsmanship

Clean Code over crap"

A Handbook of Agile Software Craftsmanship

...later transformed to:

e craftsmanship over execution

Robert C. Martin

2009 - Manifesto for SC

2002 - Software Apprenticeship Summit:

® Nno outcome!

2008 - SC Summit: Micah Martin gave a session
e many ideas as outcome
e whiteboard was signed by everyone

2009 - Doug Bradburry wrote in SC Google group
"The New Left Side" vs. Scott Pfister "Right Side,
Revisited"

Why a manifesto?

1. vocal community

2. create visibility

3. establish principles

4. develop schools

5. guidance for new devs

Further Reading Metrics

2014 - The Software Craftsman

e |deology and Attitude

Robert C. Martin Series

- = History
3T 1@ Software . Profe.ssionalism
« Craftsman m Practises

| Professionalism, Pragmatism, Pride

e Full Transformation

® Recruitment
" |nterviews
= Culture

= Pragmatism
m Career

Sandro Mancuso

~~ S

Current State |

Conferences

2009 - First SC conferences in USA, UK
2009 - Israeli SCC was founded

2010 - London SCC was founded

201 - First SoCraTes in Germany

Today - SoCraTes (partner)
conferences/days in:

Germany, Chile, Canaries, Italy, UK,
USA, Switzerland, France, Austria,
Belgium, Finnland, Romania...

SCC Communities

zen

Helsinki .
o g rO U p S Oslo Saint Petersburg
Stockholm
Estonia
e 138k on meetup.com
° Kristiansand
L h -l Pskov |
vs. 1,5M with Agile s
Glz@ow Denmark —
Lithuania
Vilnius Smolensk
United Kingdom Gdansk
Ireland @ Manchester c . Belarus o
Amsterdam ‘.
® Poland Brest
@ ® e
1 ‘ German).Dresden
‘ Kyiv
@) ‘ -
am Luxembourg Czechia Lviv Kharkiv
e Ukraine
B Slovakia y
o @ Dnipro
France Munich Donetsk
Austria
e Mold Ros!
Hungary olaova
Geneva ® ‘ 5 i
“Cri i omania
Milan Venice Croatia
Kras
Bor@aux ®
® ® Serbia Buc@rest Sevastopol
Florence
. ® Marseille.
Montenegro Bulgaria
Vigo Italy : g
Republic of
Spain Bar@ona Macedonia g Sameun
Naples Istz@»ul
Bursa
‘ Ankara
Portugal Valencia () .
urke
HEL ‘ (Grepce (o Yy
Palermo
softwarecrafters.o
Algiers Tunis W r r r (] r
Constantine

Alepbpo

http://softwarecrafters.org/

Communities in DACH region

Members:

e 29 regional groups
e 2k on website
e 9k on meetup.com

softwerkskammer.org

http://softwerkskammer.org/

" Activ

ities I

Open Space

Birds of Feather (BoF)
LeanCoffee.org
Hackergarten.net

CodeRetreat.org

L3

https://en.wikipedia.org/wiki/Open_Space_Technology
https://en.wikipedia.org/wiki/Birds_of_a_feather_(computing)
http://leancoffee.org/
http://hackergarten.net/
https://www.coderetreat.org/

=
.but we need to go back to the roots!:

= . &
many new aspiring devs

principles got lost again down the
road while doing other activities

IT market is booming and we need
technical excellence to tackle our
software products

arising lack of broad TDD knowledge

s o e e St ,

IR

1!5'.§§§§1(z ;:;% Lo ;K f;- i

i
sftyeige il

;§5 i . -

% 14 H EZEo! H 2 oo AR ey eyt

b {;zégngf_il ,if.t-'-;fgi'i e el o i : e Eoc s o L
{hst = : : . =

¥
il i :
it it e o : e -
tH Eﬁiiiiiﬁgg@i %?{;5 i s , iz e
fiigsct s 3iT i 3
R f
GELHITHE T LI o i)
R §%§f-§ﬁ§g§§;ﬁ;§; s
- BHEM g e o) i Be
7l ;;ij;‘;%éﬁ qi bl b S
s Sinnitid ol ieD 1 SRR
ik iéiﬁiiiﬁé i A £
j i ke
: i shail !iﬁ' foft o 1 Liokents
boEsE Epierciid & ;2%2 T = oo iy

i Vo o . ot | sy
TNl Sorne o 0 et o o v
W "
e 4 . "o -

ool o 48 %%
e o 0

e

Ry
s i O, e R

144 2 RV

PRI,

mﬂ-&

Vi G Sadcbamters v oo 0+
S e o it e

S

n i 2
s

L
i

X

i
i
#ry

f:
#

t ‘Yni.
81 p
£
i
¥R
1

i
i

fiif
fii
!Q:fi.
LH T
it

I
[l
i
i

¥
0 o i o e

B o | s
oW | 1y, oo o i o e

Wi & w9 o o e g

Craftsmanship Principles

Individuals & Interactions
(Learning from each others) Lifelong Learning

Clean Code Continuous Improvement

(Practice)

What is a coding dojo?

W // A bunch of coders get together,
- code, learn, and have fun. It's got to .
- |be a winning formula! — Emily Bache B

Why do we need a coding dojo?

No Coder is
Perfect

no managers, no deadlines

safe environment

all professionals need to practice!
not all forms of practice are equal
special way to practice

designed to emphasize skills that
are hard to aquire and easy to lose!

Coding Dojo Principles

First Rule: Design cannot be discussed without
Code, Code can not be shown without tests.

Come with your relicts
Learning Again

Slow down

Throwing yourself in
Finding a master
Subjecting to a master
Mastering a subject

What do we practice?

o -) 4 i\
£ & & N »
ST T & g\ / N i .

® Kata: a Japanese word, meaning literally: "form" (B! or #2), is a detailed i A

choreographed pattern of movements made to be practiced alone,

but are also practiced within groups and in unison when training!

® |n Karate: A kata is an exercise where you repeat a forrm many, many

times, while making little improvements in each repetition!

= = -

- '.;..,A 5 f - e - :

Characteristics of a Code Kata

Definition: A kata is a defined solving flow of a code exercise made
to be practiced many, many times alone, in pairs or as groups (e.g.
MOB Programming) while making little improvements.

Duration: Most exercises are quite short (~ 30 minutes to 1 hour) so
that one can incorporate them as routines in daily life!

Content: Some involve programming, and can be coded in many
different ways. Some are open ended, and involve thinking about the
issues behind programming, e.g. architecture katas.

Focus: The point of the kata is not arriving at a correct answer. The
point is the stuff you learn along the way. The goal is the practice,
not the solution!

/1 TDD s used as a default pattern for coding!

What is TDD? Why is it so hard?
/\ Goals:

Write a Make f.e e Higher dev speed
failng Fest (55 Better code quality
fest e Patterns: AAA

ﬂdlﬁ Lo e TDD is not about testing!

e TDD = specs/design

e QA is minor point

e TDD is living documentation

e |solation, Focus

e Test new behaviour in babysteps

FizzBuzz Kata

Task:

e \Write a program that prints the numbers from 1to 100 but:
e _.for multiples of 3 print Fizz

e _.for multiples of 5 print Buzz

e _.for multiples of both 3 and 5 print FizzBuzz

Example:

e 1 2, Fizz, 4, Buzz, Fizz, 7, 8, Fizz, Buzz, 11, Fizz, 13, 14, FizzBuzz,
16, 17, Fizz, 19, Buzz, Fizz, 22, 23, Fizz, Buzz, 26, Fizz, 28, 29, ...

first described in the essay "Fizz! Buzz!" (~1987) by David Langford
as a drinking game of his teenage years in the 1960s

String Calculator Kata

1. Create a simple String calculator with a method int add(string numbers)

® cantake 0, 10or 2 numbers and will return their sum, e.g. ** or "1" or “1,2"
® Start with the simplest testcase of an empty string and move to 1and 2 numbers
® Remember to solve things as simply as possible

® Remember to refactor after each passing test
2. Allow the add method to handle an unknown amount of numbers
3. Allow the add method to handle newlines between numbers instead of commas.
4. Support different delimiters with pattern: //[delimiter\n[numbers...], e.g. “//;\n1;2"
5. Calling add with a negative number should throw an exception “negatives not allowed”

6. lgnore big numbers, e.g. boundary is 1000 then 1001+ 2 = 2

Idea by Roy Osherove

http://osherove.com/tdd-kata-1

String Calculator Kata (Video)

o ” o SreperngrulaciotngSregCaiculator Test Jave - mvikatas - [=Idesfrocis/mybates)

L eyt : StreglaicistoTent - b & 0 8 Q
j 0 Prwe D 01" miw < Test jaen & revm el st r Sy gC ey Tev e Ve)

" . StringlaloulatorTest - sumf)

Vomykatas -
. o, QN
* B
v mein Lepart
- java
¢ Batest
. Hva Test
"0 banking “ publ £4 wald cnnTobens|) throws Exception |
" berrciock) N1 sltoguwelTell);
* Do destructunng
& . DestructuringTest
¢ . DamondTest ' rows Caception {
s damond y JAsEgualTelld)y
e Takest
&« WordCountTest & private 1A sumiString commaSepar st et o) {
v Onfleccubletten reters 0}
& . FleDoublettenfostere !
o fourngrow)
I gameo!ife
v Ln Qreenbarpattents
¥ . AsaTest
£ . Namelenderer Shoudd
U inknekatas
¥ . DcrionaryRepiocerTes

L Fabamian. camed

PHTOO I Tewminel O Messages B EvertLig
L0 Tests Feind: O pensac, | tedec (moments ago) 2% Ut utem » B

pachage sreparingrefactorisg;

PNy W

peblic clons StringCalculatorTest |

G remcne g Bt ¥4
«
by vmar;y

LR]

$ toam % 2 Favarites

Steps 1. + 2. = Solved with preparatory refactoring

https://www.youtube.com/watch?v=VRPXvqVLJMs&list=PL_ueet93U84VIy8O7U4dUV0GyGvuzFAt8&index=2
https://s3.amazonaws.com/media-p.slid.es/videos/475461/VL62n2OY/preparatory_refactorings_with_tdd.mp4

Discussion points for retro

Did you ever write more code than you needed to
make the current tests pass?

Did you ever have more than one failing test at a time?
Did the tests fail unexpectedly at any point? If so, why?
How much did writing the tests slow you down?

Did you write more tests than you would have if you
had coded first and written tests afterwards?

Are you happy with the design of the code you ended
up with? Should you have refactored it more often?

How do | facilitate a dojo meeting?

Upfront:

e Book a room, Invite people, Print copies of kata description,
prepare some slides for dojo introduction, inspect the
chosen kata upfront

Start:

e |ine people up by experience and match people with the
most with the ones with lowest etc. (folding queue)

During:
e Facilitator needs to create good/healthy atmosphere,
prompt interesting discussions, keep the code growing,

® Try not stop people when they mess up with TDD, let them
learn from mistakes, wait until retro before saying anything!

P
Code Retreat

09:30 Intro/Talks
10:45 Round 1
* 1:45 Round 2
i 12:45 Lunch
B 13:30 Round 3
a .
‘ 4:30 Round 4
P 15:30 Round 5

ﬂ . \. ‘

L4

< g
e
- — _
-
5
‘\

w' @_'

p—

A formgt popularized by Corey Haines

Day
|

=

‘0 ,:. ‘.‘ ..' ~
/'?.‘o‘.' , R
/."' Sl
i
!

V.

45" code + 10" retro + 5" break

Kent Beck:

e passes all tests

(O) |+ B intention | \
e minimizes duplication (DRY)
e has fewer elements

Corey Haines: https://leanpub.com/4rulesofsimpledesign

https://leanpub.com/4rulesofsimpledesign

Constraints

e Basic Activities e Quality-Constraint Activities
= Ping Pong = Only four lines per method
= Navigator-Driver » Immutables only, please

e Missing Tool Activities e Stretch Activities
= No Mouse = Verbs instead of Nouns
= Text Editor only = Code Swap
= Paper only = Mute with find the loophole

e Missing Feature Activities = TDD as if you meant it

= No naked primitives

= No conditional statements
= No loops

...more Constraints

Baby Steps

Silent Coding (Mute)

No If

No IDE

No Mouse

Only One-Liners

Every Cell is a Microservice (at Game of Life)

...more selected Katas

Bowling Game Kata (by Robert C. Martin)
Prime Factors Kata (by Robert C. Martin)
FizzBuzz Kata

BankOCR Kata

Ordered Jobs Kata

Roman Numerals Kata

Kebab Kata

Katalogues

http://kata-log.rocks
https://leanpub.com/codingdojohandbook
https://codingdojo.org/kata
http://ccd-school.de/coding-dojo
http://codekata.com
http://www.thesoftwaregardener.com/agile/dojo-code-katas
http://cyber-dojo.org

http://esékatas.org
https://www.codewars.com
https://exercism.io
http://katas.softwarecraftsmanship.org

http://kata-log.rocks/
https://leanpub.com/codingdojohandbook
https://codingdojo.org/kata/
http://ccd-school.de/coding-dojo/
http://codekata.com/
http://www.thesoftwaregardener.com/agile/dojo-code-katas/
http://cyber-dojo.org/
http://es6katas.org/
https://www.codewars.com/
https://exercism.io/
http://katas.softwarecraftsmanship.org/

Different TDD schools

London School (Mockist)

= Double Loop ATDD > e lhnesl 4
= QOutside-In Design el e g
Detroit School (Classicist) N
= Kent Beck, Uncle Bob...
= front-door testing Teglogble

System
m state verification

= only mock the process boundary (DB, 3rd party)
= design emerges bottom-up / inside-out
= "TDD as if you meant it"
"Munich School”
m Fake-it Outside-In Design

"TDD as it you meant it"

1. You are not allowed to write any production code
unless it is to make a failing unit test pass.

2. You are not allowed to write any more of a unit test
than is sufficient to fail; and compilation failures are
failures.

3. You are not allowed to write any more production
code than is sufficient to pass the one failing unit test.

Three rules by Robert C. Martin / Keith Braithwaite

http://butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd

SGOLID Principles

Single responsibility (SRP) "a class should have only a
single responsibility”

Open/closed "software entities... should be open for
extension but closed for modification”

Liskov substitution "objects should be replaceable with
instances of their subtypes without altering the correctness
of that program”

Interface segregation "many client-specific interfaces
are better than one general-purpose interface"
Dependency inversion "depend upon abstractions, not
concretions”

by Robert C. Martin / Acronym by Michael Feathers

Other Principles

KISS - "keep it simple, stupid”

DRY - "Don't repeat yourself"

YAGNI - "You aren't gonna need it"

DTSTTCPW - "Do the simplest thing that could possibly work"

...and many more principles can be practiced with Katas!

4 Benjamin Nothdurft o 'Sandra Parsick
twitter.com/dataduke twitter.com/SandraParsick

beniamln .nothdurft@codecentric. de mfo@sandra -parsick.de I {

tll!llbs E 5 ‘}‘!%

“oq (AN

