
Zero-Downtime-Development
Being King in your
microservice realm

Jürgen Albert
Data In Motion Consulting GmbH

1

About Us

● Founded in 2010
● Located in Jena/Thuringia - Germany
● Consulting, Independen RnD, Development, Training
● Assisted Development on Complex and Distributed Systems
● Wide Range of Industries

○ Medical
○ Transportation
○ Traffic Control
○ Public Sector
○ Smart City
○ IoT

2

Microservices - A short History

● Are around for 20 years
● Made popular by James Lewis and Martin Fowler around 2014
● Basically they described a Container (Docker) running a small

piece of Business logic, providing Interfaces via REST
● Idea behind this: Compartmentalize and decouple your Code
● Teams can concentrate on the Parts they are responsible for
● Use whatever technology seems appropriate for the job

3

Microservice - In a Nutshell

4

Container B Container A

Service

provideconsume

Microservice - Modularity

5

Module B Module A

Service

provideconsume

Modular System

6 6

Modul A Modul B

Service

provide

consum
e

Modul C Modul D

Service

provideconsume

Modul H Modul G

Service

provideconsume

Modul E Modul F

Service

provideconsume

provide

consume

● Distributed Systems are usually Problematic,
because “remote” always causes problems

● Hard work to keep the System konsistent
● Operation of such a System needs a very senior

DevOps Team
○ Developers tend to shift problems of the

Application Domain to the Infrastructure(e.g.
Lifecycle)

Improvements over the Last Years

● Automated Builds became CI, CT and CD
● Everybody wants to achieve automated micro releases
● Side effect: Everything needs to run in Docker. Thus Tools

became easier to Configure (Apache, Jenkins etc.)

7

8

9

● Writing Code became much more convenient
○ Annotations
○ Better Tooling
○ Improved Build Tools
○ Better Test Suites
○ The actual running Code became smaller

● Developers tend to think and develop statically in a dynamic environment
● One big Monolith gets replaced with many small ones
● Writing and Running your Code from the IDE is still oldschool

○ Code -> Run/Deploy -> Debugger until hot code replacement fails ->
restart

10

Modularity in Reality - Lifecycle

11

Modul A Modul B

Service

provideconsume

Modularity in Reality - Lifecycle and Versions

12

Modul A Modul B

Service

provide

consum
e

Modul C Modul D

Service

provideconsume

Modul H Modul G

Service

provideconsume

Modul E Modul F

Service

provideconsume

provide

consume

● Lifecycle of modules, services and Containers
○ Kubernetes is for the Container Lifecycle but

not the Application Lifecycle
● Modules can evolve independently and need

Versions
● Every Module must be aware of the current

state of its required services and handle a
potential absence

● Requires an easy way to shift modules between
Containers

Container A

Container D

Container C

Container B

v 1.1

v 1.5

v 3.6

Modularity is a Mindset and must be learned

“If you want to teach people a new way of thinking, don't
bother trying to teach them. Instead, give them a tool, the
use of which will lead to new ways of thinking.”

― R. Buckminster Fuller

13

Requirements for such a tooling

● Developers need to see the impact and dynamic of their
actions right away

● One Goal of Microservices is Zero-Downtime and micro
releases. This must be the same at Development time.

● Keep track of versions and help with the assembly of what
you need

● Allow for a Modulelith or Microservice Monolith
● Allow for easy Moving of Modules and distributing you

services 14

15

16

Conclusion

● OSGi addresses problems that usually arise in complex
systems early on (Versions, Lifecycle, Dependencies)

● OSGi makes bad design harder, but not impossible
● OSGi is uniquely suitable for Microservice Environments,

because the same concepts that apply for the big picture,
also apply in the JVM and at development time

● OSGi provides open industrial standards without being
vendor locked

17

Thanks for listening!
Resources:
Web: https://www.datainmotion.de

https://enroute.osgi.org/
https://osgi.org/specification/osgi.core/7.0.0/ch01.html
https://osgi.org/specification/osgi.cmpn/7.0.0/introduction.html

Blog: https://www.datainmotionblog.de/blog/
Git: https://gitlab.com/gecko.io/talks/2019_08_22_jug_zero-downtime-development

18

Questions?

19

