

 Introducing A Graph Database: Neo4j

 Modeling Software Structures As A Graph

 Exploring An Application Using Queries

 Live Demo #1

 Structures, Rules and Erosion

 Validation Of Conventions And Constraints

 jQAssistant

 Live Demo #2

Exploration And Verification Of Java Applications

Using A Graph Database

 Just some facts

 http://www.neo4j.org

 Latest Stable Release: 1.9.5

 Upcoming: 2.0.0 (RC1)

 Implemented in Java(!)

 Runnding embedded with native Java API…

 ….or as standalone server via REST

 Several Language Bindings, e.g. Java, JS, Ruby, PHP, .NET, …

 HA features

 Query language: Cypher

 Comprehensive documentation and online tutorials

 Community (Open source) and commercial licenses available

http://www.neo4j.org/

Exploration And Verification Of Java Applications

Using A Graph Database

 Let‘s model a Java class as a graph!

 Let‘s model a Java class as a graph!

public class Customer extends Person {

private int number;

public int getNumber() {

return this.number;

}

}

 All we need is…

 Nodes

 Labels

 Properties

 Relationships

 Modeling is just…

 Taking a pen

 Drawing the structures on a whiteboard (i.e. the database)

 We don‘t need…

 Foreign keys

 Tables and schemas

 Knowledge in graph theory

public class Customer extends Person {

private int number;

public int getNumber() {

return this.number;

}

}

public class Customer extends Person {

private int number;

public int getNumber() {

return this.number;

}

}

public class Customer extends Person {

private int number;

public int getNumber() {

return this.number;

}

}

Customer

public class Customer extends Person {

private int number;

public int getNumber() {

return this.number;

}

}

Customer

TYPE CLASS

public class Customer extends Person {

private int number;

public int getNumber() {

return this.number;

}

}

Customer

TYPE CLASS

FQN:com.buschmais.model.Customer
VISIBILITY:PUBLIC

public class Customer extends Person {

private int number;

public int getNumber() {

return this.number;

}

}

Customer

TYPE CLASS

FQN:com.buschmais.model.Customer
VISIBILITY:PUBLIC

Person

TYPE CLASS

FQN:com.buschmais.model.Person

public class Customer extends Person {

private int number;

public int getNumber() {

return this.number;

}

}

Customer

TYPE CLASS

FQN:com.buschmais.model.Customer
VISIBILITY:PUBLIC

Person

TYPE CLASS

FQN:com.buschmais.model.Person

EXTENDS

public class Customer extends Person {

private int number;

public int getNumber() {

return this.number;

}

}

Customer

TYPE CLASS

FQN:com.buschmais.model.Customer
VISIBILITY:PUBLIC

Person

TYPE CLASS

FQN:com.buschmais.model.Person

EXTENDS

number

public class Customer extends Person {

private int number;

public int getNumber() {

return this.number;

}

}

Customer

TYPE CLASS

FQN:com.buschmais.model.Customer
VISIBILITY:PUBLIC

Person

TYPE CLASS

FQN:com.buschmais.model.Person

EXTENDS

number

FIELD

public class Customer extends Person {

private int number;

public int getNumber() {

return this.number;

}

}

Customer

TYPE CLASS

FQN:com.buschmais.model.Customer
VISIBILITY:PUBLIC

Person

TYPE CLASS

FQN:com.buschmais.model.Person

EXTENDS

number

FIELD
CONTAINS

public class Customer extends Person {

private int number;

public int getNumber() {

return this.number;

}

}

Customer

TYPE CLASS

FQN:com.buschmais.model.Customer
VISIBILITY:PUBLIC

Person

TYPE CLASS

FQN:com.buschmais.model.Person

EXTENDS

number

FIELD
CONTAINS

int

TYPE

FQN:int

OF_TYPE

public class Customer extends Person {

private int number;

public int getNumber() {

return this.number;

}

}

Customer

TYPE CLASS

FQN:com.buschmais.model.Customer
VISIBILITY:PUBLIC

Person

TYPE CLASS

FQN:com.buschmais.model.Person

EXTENDS

number

FIELD

SIGNATURE:int number
VISIBILITY:PRIVATE

CONTAINS

int

TYPE

FQN:int

OF_TYPE

public class Customer extends Person {

private int number;

public int getNumber() {

return this.number;

}

}

Customer

TYPE CLASS

FQN:com.buschmais.model.Customer
VISIBILITY:PUBLIC

Person

TYPE CLASS

FQN:com.buschmais.model.Person

EXTENDS

number

FIELD

SIGNATURE:int number
VISIBILITY:PRIVATE

CONTAINS

int

TYPE

FQN:int

OF_TYPE

getNumber

CONTAINS

public class Customer extends Person {

private int number;

public int getNumber() {

return this.number;

}

}

Customer

TYPE CLASS

FQN:com.buschmais.model.Customer
VISIBILITY:PUBLIC

Person

TYPE CLASS

FQN:com.buschmais.model.Person

EXTENDS

number

FIELD

SIGNATURE:int number
VISIBILITY:PRIVATE

CONTAINS

int

TYPE

FQN:int

OF_TYPE

getNumber

METHOD

CONTAINS

public class Customer extends Person {

private int number;

public int getNumber() {

return this.number;

}

}

Customer

TYPE CLASS

FQN:com.buschmais.model.Customer
VISIBILITY:PUBLIC

Person

TYPE CLASS

FQN:com.buschmais.model.Person

EXTENDS

number

FIELD

SIGNATURE:int number
VISIBILITY:PRIVATE

CONTAINS

int

TYPE

FQN:int

getNumber

METHOD

RETURNS

CONTAINS

OF_TYPE

public class Customer extends Person {

private int number;

public int getNumber() {

return this.number;

}

}

Customer

TYPE CLASS

FQN:com.buschmais.model.Customer
VISIBILITY:PUBLIC

Person

TYPE CLASS

FQN:com.buschmais.model.Person

EXTENDS

number

FIELD

SIGNATURE:int number
VISIBILITY:PRIVATE

CONTAINS

int

TYPE

FQN:int

getNumber

METHOD

READSRETURNS

CONTAINS

OF_TYPE

public class Customer extends Person {

private int number;

public int getNumber() {

return this.number;

}

}

Customer

TYPE CLASS

FQN:com.buschmais.model.Customer
VISIBILITY:PUBLIC

Person

TYPE CLASS

FQN:com.buschmais.model.Person

EXTENDS

number

FIELD

SIGNATURE:int number
VISIBILITY:PRIVATE

CONTAINS

int

TYPE

FQN:int

getNumber

METHOD

READSRETURNS

CONTAINS

OF_TYPE

 Core elements of the „Java software graph model“

 Nodes and their labels (but without properties)

 ARTIFACT

 PACKAGE

 TYPE, CLASS, INTERFACE, ANNOTATION, ENUM

METHOD, CONSTRUCTOR, PARAMETER

 FIELD

 VALUE, CLASS, ANNOTATION, ENUM, PRIMITIVE, ARRAY

 Relationships

 CONTAINS

 EXTENDS, IMPLEMENTS

 RETURNS, THROWS, INVOKES, HAS

 ANNOTATED_BY, OF_TYPE

 The model is stored as at has been modeled!

 The model is stored as at has been modeled!

 Embedded API of Neo4j:

 The model is stored as at has been modeled!

 Embedded API of Neo4j:

Node node = graphDatabaseService.createNode();

 The model is stored as at has been modeled!

 Embedded API of Neo4j:

Node node = graphDatabaseService.createNode();

node.addLabel(MyLabels.TYPE);

 The model is stored as at has been modeled!

 Embedded API of Neo4j:

Node node = graphDatabaseService.createNode();

node.addLabel(MyLabels.TYPE);

node.setProperty("SIGNATURE", "int number")

 The model is stored as at has been modeled!

 Embedded API of Neo4j:

Node node = graphDatabaseService.createNode();

node.addLabel(MyLabels.TYPE);

node.setProperty("SIGNATURE", "int number")

node.createRelationshipTo(otherNode,
MyRelations.OF_TYPE)

 The model is stored as at has been modeled!

 Embedded API of Neo4j:

Node node = graphDatabaseService.createNode();

node.addLabel(MyLabels.TYPE);

node.setProperty("SIGNATURE", "int number")

node.createRelationshipTo(otherNode,
MyRelations.OF_TYPE)

 All operations (and even more!) also possible via
 Cypher

 REST

Exploration And Verification Of Java Applications

Using A Graph Database

 Let‘s execute a query on the graph!

 Let‘s execute a query on the graph!

Customer

TYPE CLASS

FQN:com.buschmais.model.Customer
VISIBILITY:PUBLIC

Person

TYPE CLASS

FQN:com.buschmais.model.Person

number

FIELD
CONTAINS

int

TYPE

FQN:int

getNumber

METHOD

READSRETURNS

OF_TYPE

EXTENDS

 Let‘s execute a query on the graph!

 Which class extends from another class?

Customer

TYPE CLASS

FQN:com.buschmais.model.Customer
VISIBILITY:PUBLIC

Person

TYPE CLASS

FQN:com.buschmais.model.Person

number

FIELD
CONTAINS

int

TYPE

FQN:int

getNumber

METHOD

READSRETURNS

OF_TYPE

EXTENDS

 Let‘s execute a query on the graph!

 Which class extends from another class?

Customer

TYPE CLASS

FQN:com.buschmais.model.Customer
VISIBILITY:PUBLIC

Person

TYPE CLASS

FQN:com.buschmais.model.Person

number

FIELD
CONTAINS

int

TYPE

FQN:int

getNumber

METHOD

READSRETURNS

OF_TYPE

EXTENDS

 Let‘s execute a query on the graph!

 Which class extends from another class?

 How can we express a query on this pattern?

Customer

TYPE CLASS

FQN:com.buschmais.model.Customer
VISIBILITY:PUBLIC

Person

TYPE CLASS

FQN:com.buschmais.model.Person

EXTENDS

Customer

TYPE CLASS

Person

TYPE CLASS

EXTENDS

c1

TYPE CLASS

c2

TYPE CLASS

EXTENDS

 Let‘s convert this to ASCII art…

c1

TYPE CLASS

c2

TYPE CLASS

EXTENDS

 Let‘s convert this to ASCII art…

 () as nodes

c1

TYPE CLASS

c2

TYPE CLASS

EXTENDS

 Let‘s convert this to ASCII art…

 () as nodes

 -[]-> as directed relationships

c1

TYPE CLASS

c2

TYPE CLASS

EXTENDS

 Let‘s convert this to ASCII art…

 () as nodes

 -[]-> as directed relationships

()-[]->()

c1

TYPE CLASS

c2

TYPE CLASS

EXTENDS

 Let‘s convert this to ASCII art…

 () as nodes

 -[]-> as directed relationships

(c1)-[]->(c2)

c1

TYPE CLASS

c2

TYPE CLASS

EXTENDS

 Let‘s convert this to ASCII art…

 () as nodes

 -[]-> as directed relationships

(c1)-[:EXTENDS]->(c2)

c1

TYPE CLASS

c2

TYPE CLASS

EXTENDS

 Let‘s convert this to ASCII art…

 () as nodes

 -[]-> as directed relationships

(c1:CLASS)-[:EXTENDS]->(c2:CLASS)

c1

TYPE CLASS

c2

TYPE CLASS

EXTENDS

 Pattern matching is the core principle of Cypher!

c1

TYPE CLASS

c2

TYPE CLASS

EXTENDS

 Pattern matching is the core principle of Cypher!

MATCH
(c1:CLASS)-[:EXTENDS]->(c2:CLASS)

RETURN
c1.FQN, c2.FQN

c1

TYPE CLASS

c2

TYPE CLASS

EXTENDS

 Which classes contain the highest number of methods?

 Which classes contain the highest number of methods?

MATCH
(class:CLASS)-[:CONTAINS]->(method:METHOD)

 Which classes contain the highest number of methods?

MATCH
(class:CLASS)-[:CONTAINS]->(method:METHOD)

RETURN
class.FQN, count(method) as Methods

 Which classes contain the highest number of methods?

MATCH
(class:CLASS)-[:CONTAINS]->(method:METHOD)

RETURN
class.FQN, count(method) as Methods

ORDER BY
Methods DESC

 Which classes contain the highest number of methods?

MATCH
(class:CLASS)-[:CONTAINS]->(method:METHOD)

RETURN
class.FQN, count(method) as Methods

ORDER BY
Methods DESC

LIMIT 20

 Which class has the deepest inheritance hierarchy?

 Which class has the deepest inheritance hierarchy?

MATCH
h=(class:CLASS)-[:EXTENDS*]->(super:CLASS)

 Which class has the deepest inheritance hierarchy?

MATCH
h=(class:CLASS)-[:EXTENDS*]->(super:CLASS)

RETURN
class.FQN, length(h) as Depth

 Which class has the deepest inheritance hierarchy?

MATCH
h=(class:CLASS)-[:EXTENDS*]->(super:CLASS)

RETURN
class.FQN, length(h) as Depth

ORDER BY
Depth desc

 Which class has the deepest inheritance hierarchy?

MATCH
h=(class:CLASS)-[:EXTENDS*]->(super:CLASS)

RETURN
class.FQN, length(h) as Depth

ORDER BY
Depth desc

LIMIT 20

 Queries on graph structures allow…

 Queries on graph structures allow…

 Calculation of metrics, e.g.

 Classes per package, fields/methods per class

 Depth of inheritance hierarchies

 Fan in/out of artifacts, packages, classes

 Queries on graph structures allow…

 Calculation of metrics, e.g.

 Classes per package, fields/methods per class

 Depth of inheritance hierarchies

 Fan in/out of artifacts, packages, classes

 Impact-Analysis, e.g.

Which methods/classes/packages/artifacts are potentially
affected by changes on an element?

 Queries on graph structures allow…

 Calculation of metrics, e.g.

 Classes per package, fields/methods per class

 Depth of inheritance hierarchies

 Fan in/out of artifacts, packages, classes

 Impact-Analysis, e.g.

Which methods/classes/packages/artifacts are potentially
affected by changes on an element?

 Validation of constraints and conventions, e.g.

 Naming rules

 Cyclic dependencies (types, packages)

 Internal and external dependencies

 Modules

 Frameworks and libraries

Exploration And Verification Of Java Applications

Using A Graph Database

Exploration And Verification Of Java Applications

Using A Graph Database

 At the beginning of a new project…

 Draft of the application architecture

 Definition of conventions and constraints

Modules, layers, internal and external dependencies

 Naming rules

 Initial setup of the project structure

 At the beginning of a new project…

 Draft of the application architecture

 Definition of conventions and constraints

Modules, layers, internal and external dependencies

 Naming rules

 Initial setup of the project structure

 Goals

 Breaking down complexity of problems

 „Accessibility“ for developers

 Similar structures and approaches for similar problems

 Extensibility

 Defined extension points

 etc.

 Sketch of an architecture

 Sketch of an architecture

My Big Fat Shopping Application

 Sketch of an architecture

 Business modules

Shopping CartUsermanagement

 Sketch of an architecture

 Defined dependencies between business modules

Shopping CartUsermanagement

 Sketch of an architecture

 Technical layering

JSF-UI REST

BUSINESS LOGIC

PERSISTENCE

JSF-UI REST

BUSINESS LOGIC

PERSISTENCE

 Sketch of an architecture

 Defined dependencies between technical layers

JSF-UI REST

BUSINESS LOGIC

PERSISTENCE

JSF-UI REST

BUSINESS LOGIC

PERSISTENCE

 Sketch of an architecture

 Defined dependencies of business modules & technical layers

JSF-UI REST

BUSINESS LOGIC

PERSISTENCE

JSF-UI REST

BUSINESS LOGIC

PERSISTENCE

 Sketch of an architecture

 Defined dependencies of business modules & technical layers

JSF-UI REST

BUSINESS LOGIC

PERSISTENCE

JSF-UI REST

BUSINESS LOGIC

PERSISTENCE

 Sketch of an architecture

 Decoupling of technical layers (APIs, Interfaces)

JSF-UI REST

BUSINESS LOGIC

PERSISTENCE

JSF-UI REST

BUSINESS LOGIC

PERSISTENCE

 Sketch of an architecture

 Limitation of the visibility of external dependencies per layer

JSF-UI REST

BUSINESS LOGIC

PERSISTENCE

JAX-RSJSF

EJB

JPA

 Translation of architecture rules into the project structure

 Java language element: Package

com.buschmais.shop

 Translation of architecture rules into the project structure

 Java language element: Package

 Definition of business modules on „top level“

Shopping Cart
„com.buschmais.shop.cart“

Usermanagement
„com.buschmais.shop.user“

 Translation of architecture rules into the project structure

 Java language element: Package

 Technical layers

…shop.cart.ui

…shop.cart.rest

…shop.cart.logic

…shop.cart.persistence

JSF-UI REST

BUSINESS LOGIC

PERSISTENCE

 Translation of architecture rules into the project structure

 Java language element: Package

 Technical layers

…shop.cart.ui

…shop.cart.rest

…shop.cart.logic.api

…shop.cart.logic.impl

…shop.cart.persistence.api

…shop.cart.persistence.impl

JSF-UI REST

BUSINESS LOGIC

PERSISTENCE

 Translation of architecture rules into the project structure

 Definition/restriction of allowed dependencies?

 Not (yet) supported by Java

 Solution: using dependency
managment of the build system,
e.g. Maven

JSF-UI REST

BUSINESS LOGIC

PERSISTENCE

 Translation of architecture rules into the project structure

 Definition of dependencies using the build system…

 Lots of small modules

 Lack of control (changes of
build descriptors)

 Unwanted transitive
dependencies

 No feedback to the developers,
i.e. „You can‘t do that because…“

JSF-UI REST

BUSINESS LOGIC

PERSISTENCE

 Conventions, e.g. definition of naming rules, e.g.

 Package names

 api, spi, impl

 Suffixes for JPA elements

 *Entity, *Key

 Suffixes for EJBs

 *Bean, *MDB

 But how does all this work in practice?

 „Erosion“ starts at the first day of development!

 Constantly increasing number of violations of conventions
and constraints

 Even with a one-man developer team…

 Common causes

 Fast growing complexity of applications

 Increasing amount and complexity of conventions and
constraints

 Project documentation is never up-to-date

 Different skill level of developers

 Different types of developers

 Time pressure („Hacks“)

 Broken windows

Exploration And Verification Of Java Applications

Using A Graph Database

 Approach consisting of 3 steps

 Approach consisting of 3 steps

 1. Scan

 Parsing of the application and storing as raw data in a database

 Approach consisting of 3 steps

 1. Scan

 Parsing of the application and storing as raw data in a database

 2. Enhancement of raw data by CONCEPT queries

 Labeling of nodes

 Architectural concepts (e.g. modules, layers)

 Design concepts (e.g. API vs. implementation)

 Technical concepts (JPA Entities, EJBs, tests, etc.)

 Adding relationships

 class and package dependencies

 Approach consisting of 3 steps

 1. Scan

 Parsing of the application and storing as raw data in a database

 2. Enhancement of raw data by CONCEPT queries

 Labeling of nodes

 Architectural concepts (e.g. modules, layers)

 Design concepts (e.g. API vs. implementation)

 Technical concepts (JPA Entities, EJBs, tests, etc.)

 Adding relationships

 class and package dependencies

 3. Execution of CONSTRAINT queries

Queries to detect violated rules (conventations and constraints)

 API classes which depend on implementation classes

 Message Driven Beans not having the name suffix MDB

 Concept query: Labeling JPA entities

@Entity
public class Person { …

 Concept query: Labeling JPA entities

@Entity
public class Person { …

Annotation

VALUE ANNOTATION

Person

TYPE CLASS

ANNOTATED_BY

javax.
persistence.

Entity

TYPE

OF_TYPE

 Concept query: Labeling JPA entities

MATCH
(e:CLASS)-[:ANNOTATED_BY]->(a),
(a)-[:OF_TYPE]->(at:TYPE)

WHERE
at.FQN="javax.persistence.Entity"

SET
e:JPA:ENTITY

RETURN

e.FQN as EntityName Annotation

VALUE ANNOTATION

Person

TYPE CLASS

ANNOTATED_BY

javax.
persistence.

Entity

TYPE

OF_TYPE

 Concept query: Labeling JPA entities

MATCH
(e:CLASS)-[:ANNOTATED_BY]->(a),
(a)-[:OF_TYPE]->(at:TYPE)

WHERE
at.FQN="javax.persistence.Entity"

SET
e:JPA:ENTITY

RETURN

e.FQN as EntityName Annotation

VALUE ANNOTATION

Person

TYPE CLASS

ANNOTATED_BY

javax.
persistence.

Entity

TYPE

OF_TYPE

ENTITYJPA

 Concept query: Labeling JPA entities

MATCH
(e:CLASS)-[:ANNOTATED_BY]->(a),
(a)-[:OF_TYPE]->(at:TYPE)

WHERE
at.FQN="javax.persistence.Entity"

SET
e:JPA:ENTITY

RETURN

e.FQN as EntityName

 A concept is applicable if its query returns a result

Annotation

VALUE ANNOTATION

Person

TYPE CLASS

ANNOTATED_BY

javax.
persistence.

Entity

TYPE

OF_TYPE

ENTITYJPA

 Constraint query: Restrict JPA entity to “model” packages

 Constraint query: Restrict JPA entity to “model” packages

Person

TYPE CLASS

ENTITYJPA

shop

PACKAGE

model

PACKAGE

CONTAINS

CONTAINS

 Constraint query: Restrict JPA entity to “model” packages

MATCH
(p:PACKAGE)-[:CONTAINS]->(e)

WHERE
e:JPA:ENTITY
AND NOT(p.FQN =~ '.*\\.model')

RETURN
e.FQN as EntityName

Person

TYPE CLASS

ENTITYJPA

shop

PACKAGE

model

PACKAGE

CONTAINS

CONTAINS

 Constraint query: Restrict JPA entity to “model” packages

MATCH
(p:PACKAGE)-[:CONTAINS]->(e)

WHERE
e:JPA:ENTITY
AND NOT(p.FQN =~ '.*\\.model')

RETURN
e.FQN as EntityName

 A constraint is violated if its query returns a result

Person

TYPE CLASS

ENTITYJPA

shop

PACKAGE

model

PACKAGE

CONTAINS

CONTAINS

 Concept query: Type dependencies

Annotation

VALUE ANNOTATION

Person

TYPE CLASS

ANNOTATED_BY

javax.
persistence.

Entity

TYPE

OF_TYPE

ENTITYJPA

 Concept query: Type dependencies

MATCH
(t:TYPE)-[:ANNOTATED_BY]->(a),
(a)-[:OF_TYPE]->(at:TYPE)

CREATE UNIQUE

(t)-[:DEPENDS_ON]->(at)
RETURN

count(t)
as AnnotatedTypes

Annotation

VALUE ANNOTATION

Person

TYPE CLASS

ANNOTATED_BY

javax.
persistence.

Entity

TYPE

OF_TYPE

ENTITYJPA

 Concept query: Type dependencies

MATCH
(t:TYPE)-[:ANNOTATED_BY]->(a),
(a)-[:OF_TYPE]->(at:TYPE)

CREATE UNIQUE

(t)-[:DEPENDS_ON]->(at)
RETURN

count(t)
as AnnotatedTypes

Annotation

VALUE ANNOTATION

Person

TYPE CLASS

ANNOTATED_BY

javax.
persistence.

Entity

TYPE

OF_TYPE

ENTITYJPA

DEPENDS_ON

Exploration And Verification Of Java Applications

Using A Graph Database

 Homepage http://github.com/buschmais/jqassistant

 License: Apache Software License 2.0

 Milestone 1.0.0-M1

 Based on Neo4j (embedded)

 Tool for definition and validation of coding, design and
architecture rules.

 Scan of bytecode, property files, descriptors, etc.

 Re-usable rules in XML descriptors

 Cypher based queries

 Reporting with comprehensive violation messages

 Integration in build process

 Maven Plugin

http://github.com/buschmais/jqassistant

 Rule definitions

 Cypher queries specified in XML files…

 Rule definitions

 Cypher queries specified in XML files…

 …in a project directory (project/jqassistant), or…

 Rule definitions

 Cypher queries specified in XML files…

 …in a project directory (project/jqassistant), or…

 …as part of plugins for re-usable rules

 Technical concepts, e.g. JPA entities, EJBs, test classes and
methods, etc.

 Dependency concepts, e.g. class and package dependencies

 Dependency constraints, e.g. cyclic package constraints

 Rule definitions

 Cypher queries specified in XML files…

 …in a project directory (project/jqassistant), or…

 …as part of plugins for re-usable rules

 Technical concepts, e.g. JPA entities, EJBs, test classes and
methods, etc.

 Dependency concepts, e.g. class and package dependencies

 Dependency constraints, e.g. cyclic package constraints

 Rules can have dependencies on each other

 e.g. concept package dependencies requires concept type
(dependencies)

 jQAssistant resolves correct order and executes only required
rules

 Rule definitions: Concept

 Rule definitions: Concept
<jqa:jqassistant-rules xmlns:jqa="...">

<concept id="jpa2:Entity">

<description>Labels all types annotated with
@javax.persistence.Entity with JPA and ENTITY.</description>

<cypher><![CDATA[

MATCH
(t:TYPE)-[:ANNOTATED_BY]->()-[:OF_TYPE]->(a:TYPE)

WHERE a.FQN="javax.persistence.Entity"

SET t:JPA:ENTITY

RETURN t AS jpaEntity

]]></cypher>

</concept>

</jqa:jqassistant-rules>

 Rule definitions: Concept
<jqa:jqassistant-rules xmlns:jqa="...">

<concept id="jpa2:Entity">

<description>Labels all types annotated with
@javax.persistence.Entity with JPA and ENTITY.</description>

<cypher><![CDATA[

MATCH
(t:TYPE)-[:ANNOTATED_BY]->()-[:OF_TYPE]->(a:TYPE)

WHERE a.FQN="javax.persistence.Entity"

SET t:JPA:ENTITY

RETURN t AS jpaEntity

]]></cypher>

</concept>

</jqa:jqassistant-rules>

 Rule definitions: Concept
<jqa:jqassistant-rules xmlns:jqa="...">

<concept id="jpa2:Entity">

<description>Labels all types annotated with
@javax.persistence.Entity with JPA and ENTITY.</description>

<cypher><![CDATA[

MATCH
(t:TYPE)-[:ANNOTATED_BY]->()-[:OF_TYPE]->(a:TYPE)

WHERE a.FQN="javax.persistence.Entity"

SET t:JPA:ENTITY

RETURN t AS jpaEntity

]]></cypher>

</concept>

</jqa:jqassistant-rules>

 Rule definitions: Constraint

 Rule definitions: Constraint
<jqa:jqassistant-rules xmlns:jqa="...">

<constraint id="JpaEntitiesInModelPackage">

<requiresConcept refId="jpa2:Entity"/>

<description>All JPA entities must be located in the
packages named "model“.</description>

<cypher><![CDATA[

MATCH (p:PACKAGE)-[:CONTAINS]->(e)

WHERE e:JPA AND e:ENTITY AND NOT(p.FQN =~ ".*\.model)

RETURN

e AS jpaEntity

]]></cypher>

</constraint>

</jqa:jqassistant-rules>

 Rule definitions: Constraint
<jqa:jqassistant-rules xmlns:jqa="...">

<constraint id="JpaEntitiesInModelPackage">

<requiresConcept refId="jpa2:Entity"/>

<description>All JPA entities must be located in the
packages named "model“.</description>

<cypher><![CDATA[

MATCH (p:PACKAGE)-[:CONTAINS]->(e)

WHERE e:JPA AND e:ENTITY AND NOT(p.FQN =~ ".*\.model)

RETURN

e AS jpaEntity

]]></cypher>

</constraint>

</jqa:jqassistant-rules>

 Rule definitions: Constraint
<jqa:jqassistant-rules xmlns:jqa="...">

<constraint id="JpaEntitiesInModelPackage">

<requiresConcept refId="jpa2:Entity"/>

<description>All JPA entities must be located in the
packages named "model“.</description>

<cypher><![CDATA[

MATCH (p:PACKAGE)-[:CONTAINS]->(e)

WHERE e:JPA AND e:ENTITY AND NOT(p.FQN =~ ".*\.model)

RETURN

e AS jpaEntity

]]></cypher>

</constraint>

</jqa:jqassistant-rules>

 Rule definitions: Constraint
<jqa:jqassistant-rules xmlns:jqa="...">

<constraint id="JpaEntitiesInModelPackage">

<requiresConcept refId="jpa2:Entity"/>

<description>All JPA entities must be located in the
packages named "model“.</description>

<cypher><![CDATA[

MATCH (p:PACKAGE)-[:CONTAINS]->(e)

WHERE e:JPA AND e:ENTITY AND NOT(p.FQN =~ ".*\.model)

RETURN

e AS jpaEntity

]]></cypher>

</constraint>

</jqa:jqassistant-rules>

 Rule definitions: Group

 Rule definitions: Group
<jqa:jqassistant-rules xmlns:jqa="...">

<group id="default">

<includeConstraint
refId="abstractness:ApiMustNotDependOnImplementation"/>

<includeConstraint
refId="JpaEntitiesInModelPackage"/>

<includeConstraint
refId="EjbLocatedInImplementationPackage"/>

<includeConstraint refId="TestClassNameHasTestSuffix"/>

<includeConstraint refId="dependency:TypeCycles"/>

<includeConstraint refId="dependency:ArtifactCycles"/>

</group>

</jqa:jqassistant-rules>

 Rule definitions: Group
<jqa:jqassistant-rules xmlns:jqa="...">

<group id="default">

<includeConstraint
refId="abstractness:ApiMustNotDependOnImplementation"/>

<includeConstraint
refId="JpaEntitiesInModelPackage"/>

<includeConstraint
refId="EjbLocatedInImplementationPackage"/>

<includeConstraint refId="TestClassNameHasTestSuffix"/>

<includeConstraint refId="dependency:TypeCycles"/>

<includeConstraint refId="dependency:ArtifactCycles"/>

</group>

</jqa:jqassistant-rules>

 Maven goals

 scan

 Scan the byte code

 available-rules

 List all available rules

 effective-rules

 List all rules which would be applied in the current configuration

 analyze

 Execute analysis according to the effective rules

 report

 Creates a report for maven sites

 server

 Run the embedded Neo4j server

 Plugin based and extensible

 jQAssistant is just a framework

 Plugins provide scanner and rules

 Java

 class and property file scanner

 dependency concepts and constraints (cycles)

 JPA2

 persistence descriptor scanner (persistence.xml)

 JPA entity concept

 EJB3

 concepts for EJB types and interfaces (local, remote)

 JUnit4

 Test methods and classes

 Ignored tests

Exploration And Verification Of Java Applications

Using A Graph Database

 Plugins

 More scanners

 e.g. CDI

 Scanner for beans.xml

 Concepts for beans, injection points and producer, interceptors,
delegates, …

 Rules, rules, rules

 Community?

 Visualization

 Heat maps

 e.g. dependencies of packages or modules

 Tool integration

 Gradle

 Jenkins

 Sonar

 Eclipse

 „Manual“ query execution

On-The-Fly scan & analysis

 More documentation

 Cook Books

 1 Day Workshop (03/04/2014)

 Introduction Neo4j

 Definining conventions and constraints for software projects

 Integration of jQAssistant in the development process

 Neo4j

 Tutorial (1 day workshop)

 Data modelling, Cypher, use cases

 Meetup

 Community events for Neo4j users (beginners & professionals)

 Discussion of use case scenarios, problems and solutions

 Free pizza and beer!

 Graph Databases

 Ian Robinson, Jim Webber,
Emil Eifrem

 O'Reilly Media

 1. Auflage

 ISBN: 978-1449356262

 NoSQL Distilled: A Brief Guide
to the Emerging World
of Polyglot Persistence

 Pramodkumar J. Sadalage,
Martin Fowler

 Addison-Wesley Longman

 ISBN: 978-0321826626

 Hypermodelling - Next Level Software Engineering with
Data Warehouses

http://accepted.hypermodelling.com/frey_magdeburg_dissertat
ion_hypermodelling_2013.pdf

 Oliver Gierke: Ooops, where did my architecture go?

http://www.slideshare.net/olivergierke/whoops-where-did-my-
architecture-go-10414858

http://accepted.hypermodelling.com/frey_magdeburg_dissertation_hypermodelling_2013.pdf
http://www.slideshare.net/olivergierke/whoops-where-did-my-architecture-go-10414858

 Raoul-Gabriel Urma: Expressive and Scalable Source Code
Queries with Graph Databases [Paper]

http://urma.com/pdf/oopsla13.pdf

 Pavlo Baron: Graphlr, a ANTLR storage in Neo4j

http://github.com/pavlobaron/graphlr

 Michael Hunger: Class-Graph

http://github.com/jexp/class-graph

http://urma.com/pdf/oopsla13.pdf
http://github.com/pavlobaron/graphlr
http://github.com/jexp/class-graph

buschmais.de

facebook.com/buschmais

twitter.com/buschmais

