
Title Slide with
Java FY15 Theme
Subtitle

Presenter’s Name

JDK 9 - Das neue Java Platform
Module System

Wolfgang Weigend

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Presenter’s Name
Presenter’s Title
Organization, Division or Business Unit
Month 00, 2014

Note: The speaker notes for this slide
include detailed instructions on how to reuse
this Title Slide in another presentation.

Tip! Remember to remove this text box.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Wolfgang Weigend
Sen. Leitender Systemberater
Java Technology and Architecture

Safe Harbor Statement

The preceding is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

2

Agenda

JDK 9 Status

Migration Guide

Modularity

1

2

3

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Modularity

Jigsaw und die Werkzeuge

Ausblick und Zusammenfassung

3

4

3

5

JDK 9 Status

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

JDK 9 Status

JDK 9 Status – 91 JEP’s targeted to JDK 9
http://openjdk.java.net/projects/jdk9/
102: Process API Updates
110: HTTP 2 Client
143: Improve Contended Locking
158: Unified JVM Logging
165: Compiler Control
193: Variable Handles
197: Segmented Code Cache
199: Smart Java Compilation, Phase Two
200: The Modular JDK
201: Modular Source Code
211: Elide Deprecation Warnings on Import Statements
212: Resolve Lint and Doclint Warnings

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 5

212: Resolve Lint and Doclint Warnings
213: Milling Project Coin
214: Remove GC Combinations Deprecated in JDK 8
215: Tiered Attribution for javac
216: Process Import Statements Correctly
217: Annotations Pipeline 2.0
219: Datagram Transport Layer Security (DTLS)
220: Modular Run-Time Images
221: Simplified Doclet API
222: jshell: The Java Shell (Read-Eval-Print Loop)
223: New Version-String Scheme
224: HTML5 Javadoc
225: Javadoc Search
226: UTF-8 Property Files
227: Unicode 7.0
228: Add More Diagnostic Commands
229: Create PKCS12 Keystores by Default
231: Remove Launch-Time JRE Version Selection

JEP 223: New Version-String Scheme (1)
Revise the JDK's version-string scheme: Project Verona

• It's long past time for a simpler, more intuitive versioning scheme.

• A version number is a non-empty sequence of non-negative integer
numerals, without leading zeroes, separated by period characters

– [1-9][0-9]*(\.(0|[1-9][0-9]*))*

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 6

– [1-9][0-9]*(\.(0|[1-9][0-9]*))*

• $MAJOR.$MINOR.$SECURITY

• A version string consists of a version number $VNUM, as described above,
optionally followed by pre-release and build information

• The version-string drops the initial 1 element from JDK version numbers.

– First release of JDK 9 will have the version number 9.0.0 rather than 1.9.0.0.

JEP 223: New Version-String Scheme (2)
New version-string format $MAJOR.$MINOR.$SECURITY

Old New

Release Type long short long short

------------ -------------------- ---------------------

Early Access 1.9.0-ea-b19 9-ea 9-ea+19 9-ea

Major 1.9.0-b100 9 9+100 9

Security #1 1.9.0_5-b20 9u5 9.0.1+20 9.0.1

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 7

Security #1 1.9.0_5-b20 9u5 9.0.1+20 9.0.1

Security #2 1.9.0_11-b12 9u11 9.0.2+12 9.0.2

Minor #1 1.9.0_20-b62 9u20 9.1.2+62 9.1.2

Security #3 1.9.0_25-b15 9u25 9.1.3+15 9.1.3

Security #4 1.9.0_31-b08 9u31 9.1.4+8 9.1.4

Minor #2 1.9.0_40-b45 9u40 9.2.4+45 9.2.4

JEP 223: New Version-String Scheme (3)
A simple JDK-specific Java API to parse, validate, and compare version strings
package jdk;

import java.util.Optional;

public class Version

implements Comparable<Version>

{

public static Version parse(String);

public static Version current();

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 8

public int major();

public int minor();

public int security();

public List<Integer> version();

public Optional<String> pre();

public Optional<Integer> build();

public Optional<String> optional();

public int compareTo(Version o);

public int compareToIgnoreOpt(Version o);

public boolean equals(Object o);

public boolean equalsIgnoreOpt(Object o);

public String toString();

public int hashCode();

}

$MAJOR.$MINOR.$SECURITY

Release Type Versions

---------------- -----------

Major GA jdk-9+181

Minor #1 jdk-9.1.2+27

Security #1 jdk-9.0.1+3

� $FEATURE.$INTERIM.$UPDATE.$EMERG vs. $MAJOR.$MINOR.$SECURITY

� Mark Reinhold asked two questions:

JDK Version numbers with specific proposal

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

� Mark Reinhold asked two questions:

� (1) Bearing in mind that no version-string scheme is ideal, is this scheme acceptable?

� (2) If this scheme is not acceptable then please explain why, and identify exactly what you would change.

“Ground rules, as before: I'll give much greater weight to your first reply to this message than to any
other, I'll ignore replies-to-replies, and I'll heavily discount replies that quote more text than add new
text of their own.
I'll summarize relevant replies in about a week, and then draft a JEP. – Mark Reinhold”

� Rules for Java CPU’s
− Main release for security vulnerabilities

� JDK 9.0.1 - Security Baselines

JDK Version numbers & Java Critical Patch Updates

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

− Main release for security vulnerabilities
− Covers all JDK families (9, 8, 7, 6)
− CPU release triggers Auto-update
− Dates published 12 months in advance
− Security Alerts are released as necessary
− Based off the previous (non-CPU) release
− Released simultaneously on java.com and OTN

JRE Family Version
JRE Security Baseline
(Full Version String)

9 9.0.1+11

8 1.8.0_151-b12

7 1.7.0_161-b13

6 1.6.0_171-b13

Migrating to Oracle JDK 9 - Migration Guide (1)
https://docs.oracle.com/javase/9/migrate/

• How to proceed as you migrate your existing Java application to JDK 9
• Every new Java SE release introduces some binary, source and behavioral incompatibilities with previous releases

• The modularization of the Java SE Platform brings many benefits but also many changes

• Code that uses only official Java SE Platform APIs and supported JDK-specific APIs should continue to work without change

• Code that uses certain features or JDK-internal APIs may not run or may give different results

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 11

• Prepare for Migration
• Get the JDK 9 Build

• Run Your Program Before Recompiling

• Update Third-Party Libraries

• Compile Your Application

• Run jdeps on Your Code

Migrating to Oracle JDK 9 - Migration Guide (2)
https://docs.oracle.com/javase/9/migrate/

• Beware of changes that you may encounter as you run your application
• Changes to the Installed JDK/JRE Image

• Removed APIs

• Deployment

• Changes to Garbage Collection

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 12

• Changes to Garbage Collection

• Removed Tools

• Removed macOS-specific Features

Migrating to Oracle JDK 9 - Migration Guide (3)
Removed Tools
– JavaDB, which was a rebranding of Apache Derby, is not included in JDK 9

– JVM Tools Interface hprof agent library (libhprof.so) has been removed
• The hprof agent was written as demonstration code for the JVM Tool Interface and not intended to be a production tool. The useful features of the

hprof agent have been superseded by better tools in the JDK

– The jhat tool was an experimental, unsupported heap visualization tool added in JDK 6. Superior
heap visualizers and analyzers have been available for many years

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 13

heap visualizers and analyzers have been available for many years

– The launchers java-rmi.exe from Windows and java-rmi.cgi from Linux and Solaris have been
removed

– The IIOP transport support from the JMX RMI Connector along with its supporting classes have
been removed in JDK 9

– Windows 32 Client VM is dropped and only a server VM is offered in JDK 9

– Visual VM removed
• Visual VM is a tool that provides information about code running on a Java Virtual Machine. It was provided with JDK 6, JDK 7, and JDK 8

• Visual VM is not bundled with JDK 9. If you would like to use Visual VM with JDK 9, you can get it from the Visual VM open source project site

Modularity

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Modularity

• These are the final results of the Public Review Reconsideration Ballot for JSR #376.

• The EC has approved this ballot. The votes are below:

JSR 376: Java Platform Module System (1)
Public Review Reconsideration Ballot from 2017-06-13 to 2017-06-26

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 15

On 2017-06-13 IBM voted Yes with the following comment:
IBM supports the revised JPMS specification moving to Proposed
Final Draft, with credit due to Oracle as the specification leader
and those in the JSR 376 Expert Group who dedicated their time to
reaching this milestone.

Modular Development with JDK 9

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 16

Goals of the Java SE 9 Module System (1)
• Reliable configuration with better maintenance

– replace the brittle, error-prone class-path mechanism with a means for program components to declare
explicit dependences upon one another

– Each modul exists once

– Verification of all necessary modules exist at start time

• Strong encapsulation

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

• Strong encapsulation

– allow a component to declare which of its public types are accessible to other components, and which
are not. Prevents access to non-public classes and API’s

– module can declare an API to other modules

– packages not on the API are hidden

• Addressing these goals would enable further benefits:

– A scalable platform for deployment of small applications and tiny runtime

– Greater platform integrity and Improved performance

17

Non-Goals of the Java SE 9 Module System (2)

• The Java Platform Module System does not replace OSGi

• The Java Platform Module System does not support versioning of modules

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 18

• Provide a means for developers and libraries to define their own modules

• Reflection API‘s for module information

• Integration with developer tools (Maven, Gradle, IDE‘s)

• Integration with existing package managers (e.g., RPM)

JSR 376: Java Platform Module System (2)
An approachable yet scalable module system for the Java Platform

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

• Integration with existing package managers (e.g., RPM)

• Dynamic configuration of module graph (e.g., for Java EE containers)

• Current documents, code, & builds
�Requirements
�The State of the Module System (design overview)
�Initial draft JLS and JVMS changes
�Draft API specification (diffs relative to JDK 9)

� java.lang.Class
� java.lang.ClassLoader
� java.lang.reflect.Module
� java.lang.module

�Issue summary
�RI prototype: Source, binary

19

� JSR 376 Java Platform Module System

� JEP 200: The Modular JDK

� JEP 201: Modular Source Code

� JEP 220: Modular Run-Time Images

Projekt Jigsaw
JDK Enhancement Proposal’s (JEP’s)

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

� JEP 220: Modular Run-Time Images

� JEP 260: Encapsulate Most Internal APIs

� JEP 261: Module System

� JEP 282: jlink - The Java Linker

� JDK 9 GA – JDK 9+181

� JDK 9.0.1 General-Availability Release is here: http://jdk.java.net/9/

20

JEP 200: The Modular JDK (1)

• Make minimal assumptions about the module system that will be used to
implement that structure.

• Divide the JDK into a set of modules that can be combined at compile time,
build time, install time, or run time into a variety of configurations including,

Goal: Define a modular structure for the JDK

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

build time, install time, or run time into a variety of configurations including,
but not limited to:

– Configurations corresponding to the full Java SE Platform, the full JRE, and the full JDK;

– Configurations roughly equivalent in content to each of the Compact Profiles defined
in Java SE 8; and

– Custom configurations which contain only a specified set of modules and the modules
transitively required by those modules.

21

JEP 200: The Modular JDK (2)

• can contain class files, resources, and related native and configuration files.

• has a name.

• can depend, by module name, upon one or more other modules.

• can export all of the public types in one or more of the API packages that it contains, making them

Module System Assumptions: A module …

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

• can export all of the public types in one or more of the API packages that it contains, making them
available to code in other modules depending on it

• can restrict, by module name, the set of modules to which the public types in one or more of its API
packages are exported. (sharing internal interface)

• can re-export all of the public types that are exported by one or more of the modules upon which it
depends. (support refactoring & aggregation)

�A module is a set of packages with classes & interfaces

�The module metadata is in module-info.class

22

JEP 200: The Modular JDK (3)

• Standard modules, whose specifications are governed by the JCP, must
have names starting with the string "java.".

• All other modules are merely part of the JDK, and must have names
starting with the string "jdk.".

Design Principles

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

starting with the string "jdk.".

• If a module exports a type that contains a public or protected member
that, in turn, refers to a type from some other module then the first
module must re-export the public types of the second. This ensures that
method-invocation chaining works in the obvious way.

• Additional principles in JEP 200 text to ensure that code which depends
only upon Java SE modules will depend only upon standard Java SE types.

23

JEP 200: The Modular JDK (4)
Module Graph

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 24

Modules

• A module is a named, self-describing collection of code & data

– Code is organized as a set of packages containing types

• It declares which other modules it requires in order to be compiled and run

A fundamental new kind of Java component

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

• It declares which of its packages it exports.

• Module system locates modules

– Ensures code in a module can only refer to types in modules upon which it depends

– The access-control mechanisms of the Java language and the Java virtual machine
prevent code from accessing types in packages that are not exported by their defining
modules.

25

Module descriptors

• class files already have a precisely-defined and extensible format

• consider module-info.class file as module descriptor

– includes the compiled forms of source-level module declarations

– may include additional kinds of information recorded in class-file attributes

module-info.class advantages

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

– may include additional kinds of information recorded in class-file attributes
• inserted after the declaration is initially compiled.

• An IDE can insert class file attributes containing documentary information

– module version, title, description, and license.

• This information can be read at compile time and run time

– for use in documentation, diagnosis, and debugging

26

Platform modules

• The only module known specifically to the module system is java.base.

– The base module is always present. Every other module depends implicitly upon the
base module, while the base module depends upon no other modules

• The base module defines and exports all of the platform’s core packages,

Modules all the way down to the base module: java.base

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

• The base module defines and exports all of the platform’s core packages,
including the module system itself:

module java.base {

exports java.io;

exports java.lang;

exports java.lang.module;

... }

27

Module Paths

• module system can select a module to resolve a dependence

– built-in to the compile-time or run-time environment or

– a module defined in an artifact
• the module system locates artifacts on one or more module paths defined by the host system.

Where do modules fulfilling dependences come from?

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

• the module system locates artifacts on one or more module paths defined by the host system.

• A module path is a sequence of directories containing module artifacts

– searched, in order, for the first artifact that defines a suitable module.

• Module paths are materially different from class paths, and more robust:

– A class path is a means to locate individual types in all the artifacts on the path.

– A module path is a means to locate whole modules rather than individual types.
• If a particular dependence can not be fulfilled then resolution will fail with an error message

28

Packages and Modules - Module Declarations

ModuleDirective:

requires {RequiresModifier} ModuleName ;

exports PackageName [to ModuleName {, ModuleName}] ;

opens PackageName [to ModuleName {, ModuleName}] ;

Java Language Specification, Java SE 9 Edition

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 29

opens PackageName [to ModuleName {, ModuleName}] ;

uses TypeName ;

provides TypeName with TypeName {, TypeName} ;

Services (1)

• Our com.foo.app module extended to use a MySQL database

– a MySQL JDBC driver implementing java.sql.Driver is provided in a module:

module com.mysql.jdbc {

requires java.sql;

Loose coupling

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

requires java.sql;

requires org.slf4j;

exports com.mysql.jdbc;

}

30

Services (2)

• In order for the java.sql module to make use of this driver we must

– add the driver module to the run-time module graph

– resolve its dependences

• java.util.ServiceLoader class can instantiate the driver class via reflection

Loose coupling

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

• java.util.ServiceLoader class can instantiate the driver class via reflection

31

Services (3)

• Module system must be able to locate service providers.

• Services provided are declared with a provides clause:

module com.mysql.jdbc {

requires java.sql;

Loose coupling

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

requires java.sql;

requires org.slf4j;

exports com.mysql.jdbc;

provides java.sql.Driver with com.mysql.jdbc.Driver;

}

32

Services (4)

• Module system must be able to locate service users.

• Services used are declared with a uses clause:

module java.sql {

requires public java.logging;

Loose coupling

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

requires public java.logging;

requires public java.xml;

exports java.sql;

exports javax.sql;

exports javax.transaction.xa;

uses java.sql.Driver;

}

33

Services (5)

• Clarity

• Service declarations can be interpreted at compile time

– to ensure that the service interface is accessible

– to ensure that providers actually do implement their declared service interfaces

Advantages of using module declations to declare service relationships

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

– to ensure that providers actually do implement their declared service interfaces

– to ensure that observable providers are appropriately compiled and linked prior to
run time

• Catching runtime problems at compile time!

34

Class Loaders

• Few restrictions on the relationships between modules and class loaders:

– A class loader can load types from one module or from many modules
• as long the modules do not interfere with each other and

• the types in any particular module are loaded by just one loader

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

• the types in any particular module are loaded by just one loader

• Critical to compatibility

– retains the existing hierarchy of built-in class loaders.

• Easier to modularize existing applications with complex class loaders

– class loaders can be upgraded to load types in modules

– without necessarily changing their delegation patterns

35

Modular Class Loading in JDK 9

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 36

Layers

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 37

Layer creation

(2)
String moduleName -> {

switch (moduleName) {

case “java.base“:

case “java.logging“:

return BOOTSTRAP_LDR;

default:

(1)

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 38

default:

return APP_LDR;

}

}

Unnamed Modules

• Every class loader has a unique unnamed module

– returned by the new ClassLoader::getUnnamedModule method

• A class loader loads a type not defined in a named module

– that type is considered to be in the unnamed module

Backwards compatibility: Loading types from the class path

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

– that type is considered to be in the unnamed module

• An unnamed module

– reads every other module

– exports all of its packages to every other module

• Existing class-path applications using only standard APIs can keep working

39

Während der Übergangszeit bleibt diese Hintertür offen
At your own risk: java launcher and javac option, as part of JEP 261: Module System

• --add-exports <source-module>/<package>=<target-module>(,<target-module>)*

where <source-module> and <target-module> are module names and <package> is the name of a package

• --add-exports java.management/com.sun.jmx.remote.internal=jmx.wbtest

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 40

• --add-exports java.management/com.sun.jmx.remote.internal=jmx.wbtest

• --add-exports java.management/sun.management=ALL-UNNAMED

�The --add-exports option must be used with great care. You can use it to gain access to an internal API of

a library module, or even of the JDK itself, but you do so at your own risk: If that internal API changes or

is removed then your library or application will fail.

Jigsaw und die Werkzeuge

• jimage

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

• jimage

• jdeps

• jlink

jimage – Modulverzeichnis-Kommando (1)

C:\jdk-9> java –version

java version "9"

Java(TM) SE Runtime Environment (build 9+181)

Java HotSpot(TM) Server VM (build 9+181, mixed mode, emulated-client)

C:\jdk-9\lib> jimage info modules

Tools should never read jimage files, directly or via code. It’s an JVM-internal format ..

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 42

C:\jdk-9\lib> jimage info modules

C:\jdk-9\lib> jimage list modules

/* list all JDK 9 *.class files from the modules file */

C:\jdk-9\lib> jimage extract --dir=C:\jdk-9\mydir modules

/* extract all JDK 9 *.class files from the lib\modules file */

C:\jdk-9> java --list-modules

/* list the JDK 9 modules */

jimage – Modulverzeichnis-Kommando (2)

• JIMAGE Format

� Schneller Zugriff auf die im JDK 9 enthaltene Klassen

� Kein langsames Durchsuchen von ZIP-Einträgen

� JIMAGE für beschleunigtes Klassenladen innerhalb vom JDK

• JMOD Format

Tools should never read jimage files, directly or via code. It’s an JVM-internal format ..

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 43

• JMOD Format

� Basiert auf dem ZIP-Format, wie das JAR-Format

� Für modulspezifische Metadaten und plattformspezifische Bibliotheken (DLL‘s oder SO-Files)

� JMOD Format soll künftig Ersatz für das JAR-Format werden, damit komplette Java-Anwendungen als Modul ausgeliefert werden

können, inklusive allen Metadaten von Abhängigkeiten und exportierten API‘s

� Anwendungs-Rollout mit abgespeckter JRE, nur mit den benötigten Modulen

Q: Without it, how can org.reflections and scannotations efficiently find all classes that have specific annotation?
A: Tools should use the jrt filesystem to scan classes in the image. Details in JEP 220: http://openjdk.java.net/jeps/220

jdeps - Java-Class-Dependency-Analyzer

C:\mlib> c:\jdk-9.0.1\bin\jdeps -profile com.greetings.jar

com.greetings

[file:///C:/mlib/com.greetings.jar]

requires mandated java.base (@9-ea)

com.greetings -> java.base (compact1)

com.greetings -> java.io compact1

com.greetings -> java.lang compact1

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 44

C:\mlib> c:\jdk-9.0.1\bin\jdeps -v com.greetings.jar

com.greetings

[file:///C:/mlib/com.greetings.jar]

requires mandated java.base (@9-ea)

com.greetings -> java.base

com.greetings.Main -> java.io.PrintStream java.base

com.greetings.Main -> java.lang.Object java.base

com.greetings.Main -> java.lang.String java.base

com.greetings.Main -> java.lang.System java. base

jdeps - Java-Class-Dependency-Analyzer JDK 9.0.1 (1)

C:\jdk-9.0.1\JavaFXApplication3\dist> jdeps -profile JavaFXApplication3.jar

JavaFXApplication3.jar -> C:\Program Files (x86)\Java\jdk1.8.0_45\jre\lib\ext\jfxrt.jar

JavaFXApplication3.jar -> C:\Program Files (x86)\Java\jdk1.8.0_45\jre\lib\rt.jar (compact1)

javafxapplication3 (JavaFXApplication3.jar)

-> java.io compact1

-> java.lang compact1

-> javafx.application jfxrt.jar

-> javafx.collections jfxrt.jar

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

-> javafx.collections jfxrt.jar

-> javafx.event jfxrt.jar

-> javafx.scene jfxrt.jar

-> javafx.scene.control jfxrt.jar

-> javafx.scene.layout jfxrt.jar

-> javafx.stage jfxrt.jar

C:\jdk-9.0.1\JavaFXApplication3\dist> jdeps -v JavaFXApplication3.jar

C:\jdk-9.0.1\bin> jdeps --generate-module-info C:\jdk-9.0.1\JavaFXApplication3\dist c:\jdk-

9.0.1\JavaFXApplication3\dist\JavaFXApplication3.jar

writing to C:\jdk-9.0.1\JavaFXApplication3\dist\JavaFXApplication3\module-info.java

jdeps - Java-Class-Dependency-Analyzer JDK 9.0.1 (2)

C:\jdk-9.0.1\bin> jdeps --generate-module-info C:\jdk-9.0.1\JavaFXApplication3\dist c:\jdk-

9.0.1\JavaFXApplication3\dist\JavaFXApplication3.jar

writing to C:\jdk-9.0.1\JavaFXApplication3\dist\JavaFXApplication3\module-info.java

C:\jdk-9.0.1\JavaFXApplication3\dist\JavaFXApplication3> dir

24.10.2017 21:33 171 module-info.java

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

C:\jdk-9.0.1\JavaFXApplication3\dist\JavaFXApplication3> type module-info.java

module JavaFXApplication3 {

requires javafx.base;

requires javafx.controls;

requires transitive javafx.graphics;

exports javafxapplication3;

}

jdeps - Java-Class-Dependency-Analyzer JDK 9.0.1 (3)
C:\jdk-9.0.1\bin> jdeps --module-path C:\jdk-9.0.1\JavaFXApplication3\dist -s -dotoutput c:\jdk-

9.0.1\JavaFXApplication3\dist c:\jdk-9.0.1\JavaFXApplication3\dist\JavaFXApplication3.jar

C:\jdk-9.0.1\JavaFXApplication3\dist> type summary.dot

digraph "summary" {

"JavaFXApplication3.jar" -> "java.base (java.base)";

"JavaFXApplication3.jar" -> "javafx.base (javafx.base)";

"JavaFXApplication3.jar" -> "javafx.controls (javafx.controls)";

"JavaFXApplication3.jar" -> "javafx.graphics (javafx.graphics)";

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

"JavaFXApplication3.jar" -> "javafx.graphics (javafx.graphics)";

}

http://www.webgraphviz.com/

Additional diagnostic options supported by the launcher include
java --show-module-resolution to show module resolution output during startup, and
causes the module system to describe its activities as it constructs the initial module graph

C:\jdk-9> java --show-module-resolution|more
root jdk.jdi jrt:/jdk.jdi

root javafx.web jrt:/javafx.web

root jdk.xml.dom jrt:/jdk.xml.dom

root jdk.jfr jrt:/jdk.jfr

root jdk.packager.services jrt:/jdk.packager.services

root jdk.httpserver jrt:/jdk.httpserver

Since JDK 9 ea build 166:

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 48

root jdk.httpserver jrt:/jdk.httpserver

root javafx.base jrt:/javafx.base

root jdk.net jrt:/jdk.net

root javafx.controls jrt:/javafx.controls

root java.se jrt:/java.se

root jdk.compiler jrt:/jdk.compiler

root jdk.jconsole jrt:/jdk.jconsole

root jdk.plugin.dom jrt:/jdk.plugin.dom

root jdk.attach jrt:/jdk.attach

root jdk.javadoc jrt:/jdk.javadoc

root jdk.jshell jrt:/jdk.jshell

root oracle.desktop jrt:/oracle.desktop

root jdk.sctp jrt:/jdk.sctp

root jdk.jsobject jrt:/jdk.jsobject

root javafx.swing jrt:/javafx.swing

root jdk.packager jrt:/jdk.packager

“Also since early builds, `-Xdiag:resolver`

was the option to print resolver diagnostic

messages. This really odd option has now being

replaced with `--show-module-resolution` to

show resolution during startup.

The output has been cleaned up to make it

easier to read and search.”

jlink - generiert JRE und Applikations-Images (1)
• Platzsparende Runtime, inklusive eigener Anwendungsmodule im frei wählbaren Verzeichnis
jlink <options> --module-path <modulepath> --output <path>

jlink --module-path $JDKMODS:mlib --add-modules myapp --output myimage

C:\> jlink --module-path C:\jdk-9.0.1\jmods;mlib --add-modules com.greetings --compress=2 --

verbose --output greetingsapplication

com.greetings file:///C:/mlib/com.greetings.jar

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 49

com.greetings file:///C:/mlib/com.greetings.jar

java.base file:///C:/jdk-9.0.1/jmods/java.base.jmod

Providers: java.base provides java.nio.file.spi.FileSystemProvider used by java.base

jlink - generiert JRE und Applikations-Images (2)
• Image-Verzeichnis C:\greetingsapplication 24 MB

C:\greetingsapplication> dir

Directory of C:\greetingsapplication

02.11.2017 19:04 <DIR> .

02.11.2017 19:04 <DIR> ..

02.11.2017 19:04 <DIR> bin

02.11.2017 19:04 <DIR> conf

02.11.2017 19:04 <DIR> include

• Datei release „9.0.1“
JAVA_VERSION="9.0.1"

MODULES="java.base com.greetings"

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 50

• Datei release mit früherem „build 9-ea+142-jigsaw-nightly-h5677-20161102”

02.11.2017 19:04 <DIR> include

02.11.2017 19:04 <DIR> legal

02.11.2017 19:04 <DIR> lib

02.11.2017 19:04 57 release

#Thu Mar 09 22:11:23 CET 2017

OS_NAME="Windows"

MODULES="java.base com.greetings"

OS_VERSION="5.1"

OS_ARCH="i586"

JAVA_VERSION="9"

JAVA_FULL_VERSION="9-ea"

jlink - generiert JRE und Applikations-Images (3)
• Image-Verzeichnis C:\greetingsapplication 24 MB

C:\greetingsapplication\bin> java -m com.greetings/com.greetings.Main

Greetings!

C:\greetingsapplication\bin> dir

02.11.2017 19:04 143.360 java.dll

02.11.2017 19:04 225.280 java.exe

02.11.2017 19:04 225.792 javaw.exe

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 51

02.11.2017 19:04 225.792 javaw.exe

02.11.2017 19:04 19.456 jimage.dll

02.11.2017 19:04 195.072 jli.dll

02.11.2017 19:04 10.752 keytool.exe

02.11.2017 19:04 660.128 msvcp120.dll

02.11.2017 19:04 963.232 msvcr120.dll

02.11.2017 19:04 89.600 net.dll

02.11.2017 19:04 53.760 nio.dll

02.11.2017 19:04 <DIR> server

02.11.2017 19:04 43.008 verify.dll

02.11.2017 19:04 70.144 zip.dll

C:\mlib> java -jar com.greetings.jar

Greetings!

jlink - generiert JRE und Applikations-Images (4)
• Image-Verzeichnis C:\greetingsapplication 24 MB

C:\greetingsapplication\bin> java -m com.greetings/com.greetings.Main

Greetings!

C:\greetingsapplication\bin> java --show-module-resolution -m com.greetings/com.greetings.Main

root com.greetings jrt:/com.greetings

Greetings!

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 52

Greetings!

C:\greetingsapplication\bin> java --list-modules -m com.greetings/com.greetings.Main

com.greetings

java.base@9.0.1

C:\greetingsapplication\bin> java -verbose -m com.greetings/com.greetings.Main

C:\greetingsapplication\bin>

java --add-exports java.base/jdk.internal.ref=ALL-UNNAMED -m com.greetings/com.greetings.Main

Greetings!

• Sources per JDK
� service

� java ..

� java-8 ..

� java-9

� org.gradle.example.service

JSR 376: Java Platform Module System – Gradle (1)
Integration with developer tools (Maven, Gradle, IDE‘s)

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

� org.gradle.example.service

� Service9

• Dependencies per JDK
sources {

java8 ..

java9 {

dependencies {

library ‘org.apache.httpcomponents:httpclient:4.5.1‘

}

}

}

53

• JEP 238: Multi-Release JAR
jar root

– A.class

– B.class

– C.class

JSR 376: Java Platform Module System – Gradle (2)
Integration with developer tools (Maven, Gradle, IDE‘s)

• A multi-release JAR "MRJAR" will contain
additional directories for classes and resources
specific to particular Java platform releases.
• A JAR for a typical library might look like this:

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

– C.class

– D.class

– META-INF

– versions

– 8

– A.class

– B.class

– 9

– A.class

– 10

– A.class

–}
54

• A JAR for a typical library might look like this:

jar root

– A.class

– B.class

– C.class

– D.class

JSR 376: Java Platform Module System – NetBeans IDE (1)
Integration with developer tools (Maven, Gradle, IDE‘s)

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 55

JSR 376: Java Platform Module System – NetBeans IDE (2)
Integration with developer tools (Maven, Gradle, IDE‘s)

� http://bits.netbeans.org/download/trunk/nightly/latest/

� C:\Program Files\NetBeans Dev 201703140002

� C:\Program Files\Java\jdk1.8.0_151

� JDK 9.0.1

� http://wiki.netbeans.org/JDK9Support#JDK9_EA_Support

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 56

Summary of modularity impact in JDK 9

• Modules for programming in the large

• Modules bundle together one or more packages for reuse and can offer
stronger encapsulation than jars

• Supporting changes throughout the platform:

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

• Supporting changes throughout the platform:

– module-info.java files to declare dependencies between modules

– Changes to javac command line to find types in modules as well as in jars

– Corresponding updates to java command line and HotSpot JVM runtime

– New reflective API‘s to model modules (core reflection, javax.lang.model, etc.)

57

Zusammenfassung

� Die Modularisierung der Java SE Plattform im JDK 9 bringt viele Vorteile, aber auch
größere Änderungen

� Existierender Anwendungs-Code, der nur offizielle Java SE Plattform-API‘s mit den
unterstützten JDK-spezifischen API’s verwendet, soll auch weiterhin ohne Änderungen
ablauffähig sein

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 58

ablauffähig sein
� Abwärtskompatibilität
� Dennoch ist es wahrscheinlich, wenn weiterhin veraltete Funktionalität oder JDK-interne API’s
verwendet werden, dass der Code unverträglich sein kann

� Entwickler sollten sich frühzeitig damit vertraut machen, wie existierende Bibliotheken &
Anwendungen auf JDK 9 anzupassen sind, sie modularisiert werden, welche Designfragen
zu klären sind und wie man vorhandenen Anwendungs-Code trotzdem mit JDK 9 zum
Laufen bekommt, auch wenn man diesen nicht verändern kann

Danke!

Wolfgang.Weigend@oracle.com

Twitter: @wolflook

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 59

Bücher zum JDK 9 Java Module System

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. Oracle Confidential – Internal/Restricted/Highly Restricted 60

