
© Copyright 2019 Pivotal Software, Inc. All rights Reserved.

Mark Paluch • Spring Data Engineer 
@mp911de

Reactive Relational Database 
Connectivity



Reactive 
Programming ● High-efficiency applications 

● Fundamentally non-blocking 
● No opinion on async 

● Key differentiators: (pull-push) back 
pressure, flow control



SubscriberPublisher

Subscribe

Data

Demand



SubscriberPublisher

Subscribe

Data

request(n)



SubscriberPublisher

Subscribe

Data

request(n)

Backpressure!



WebFlux and WebClient

@GetMapping("/health") 
Mono<Health> compositeHealth() { 
  return Mono.zip( 
    webClient.get().uri("https://alpha-service/health") 
      .retrieve().bodyToMono(Health.class), 
    webClient.get().uri("https://bravo-service/health") 
      .retrieve().bodyToMono(Health.class)) 
    .map(t -> composite(t.getT1(), t.getT2())); 
} 



Roadblocks
● Barriers to using Reactive everywhere 

● Cross-process back pressure 
● RSocket 

● Data Access 
● MongoDB, Apache Cassandra, Redis 
● No Relational Database Access



A specification designed from the 
ground up for reactive programming

https://r2dbc.io



Dependencies
● Reactive Streams 

● Java 8 



Design Principles
● Embrace Reactive Types and Patterns 

● Non-blocking, all the way to the database 

● Documented specification 

● Shrink the driver SPI 

● Enable multiple "humane" APIs



Driver SPI
● JDBC: same API for humane API and 

inhumane SPI for alternative clients like 
JPA, jOOQ, Jdbi, etc. 

● API that users didn't like using and driver 
authors didn't like implementing 

● Duplicating effort implementing the same 
"humane" affordances like ? binding



Driver SPI - ConnectionFactory

    Publisher<Connection> create() 

ConnectionFactoryMetadata getMetadata() 



Driver SPI - Connection

Publisher<Void> beginTransaction() 

Publisher<Void> close() 

Publisher<Void> commitTransaction() 

          Batch createBatch() 

Publisher<Void> createSavepoint(String name) 

      Statement createStatement(String sql) 

Publisher<Void> releaseSavepoint(String name) 

Publisher<Void> rollbackTransaction() 

Publisher<Void> rollbackTransactionToSavepoint(String name) 

Publisher<Void> setTransactionIsolationLevel(IsolationLevel isolationLevel)



Driver SPI - Statement

        Statement add() 

        Statement bind(Object identifier, Object value) 

        Statement bind(int index, Object value) 

        Statement bind(int index, <primitive types> value) 

        Statement bindNull(Object identifier, Class<?> type) 

        Statement bindNull(int index, Class<?> type) 

        Statement returnGeneratedValues(String… columnNames) 

Publisher<Result> execute() 



Driver SPI - Result and Row

Publisher<Integer> getRowsUpdated() 

      Publisher<T> map(BiFunction<Row, RowMetadata, ? extends T> f) 

     T get(Object identifier, Class<T> type); 

Object get(Object identifier); 



Simple Select

Publisher<Object> values = connectionFactory.create() 
  .flatMapMany(conn -> 
    conn.createStatement("SELECT value FROM test") 
        .execute() 
        .flatMap(result -> 
              result.map((row, metadata) -> row.get("value"))))



Simple Select

Publisher<String> values = connectionFactory.create() 
  .flatMapMany(conn -> 
    conn.createStatement("SELECT value FROM test") 
        .execute() 
        .flatMap(result -> 
              result.map((row, metadata) -> row.get("value",  

                                         String.class))))



Simple Prepared Insert

Publisher<Result> results = connectionFactory.create() 
  .flatMapMany(conn -> 
    conn.createStatement("INSERT INTO test VALUES($1, $2)") 
      .bind("$1", 100).bind("$2", 200).add() 
      .bind("$1", 300).bind("$2", 400).execute())



Transactional Prepared Insert

Publisher<Result> results = connectionFactory.create() 
  .flatMapMany(conn -> 
    conn.beginTransaction() 
      .thenMany(conn.createStatement("INSERT INTO test VALUES($1)") 
        .bind("$1", 100).add() 
        .bind("$1", 200).execute()) 
      .delayUntil(p -> conn.commitTransaction()) 
      .onErrorResume(t ->  
        conn.rollbackTransaction().then(Mono.error(t))))



Great! But a Bit 
Verbose

● Minimal set of implementation specific 
operations 

● Definitely usable, but very verbose and 
prone to errors 
● Explicit transaction management is 

analogous to try-catch-
finally-try-catch in JDBC 

● We need a "humane" client API.  In fact 
we need many humane client APIs!



Simple Select

Flux<String> values = r2dbc.withHandle(handle -> 
  handle.select("SELECT value FROM test") 
    .mapRow(row -> row.get("value", String.class)))



Simple Prepared Insert

Flux<Integer> updatedRows = r2dbc.withHandle(handle -> 
  handle.createUpdate("INSERT INTO test VALUES($1, $2)") 
    .bind("$1", 100).bind("$2", 200).add() 
    .bind("$1", 300).bind("$2", 400).execute())



Transactional Prepared Insert

Flux<Integer> updatedRows = r2dbc.inTransaction(handle -> 
  handle.createUpdate("INSERT INTO test VALUES($1, $2)") 
    .bind("$1", 100).bind("$2", 200).add() 
    .bind("$1", 300).bind(„$2", 400).execute())



Spring Data DatabaseClient

DatabaseClient client = DatabaseClient.create(connectionFactory); 

Flux<Person> rows = client.execute() 
          .sql("SELECT * FROM person WHERE name = :name") 
  .bind("John Doe") 
          .as(Person.class) 
  .fetch() 
  .all();



Spring Data Repository

interface CustomerRepository extends 
    ReactiveCrudRepository<Customer, Long> { 

  @Query("SELECT * FROM … WHERE lastname = :lastname") 
  Flux<Customer> findByLastname(String lastname); 
} 

repository.findByLastname("Matthews") 
  .doOnEach(c -> System.out.println(c.firstname))



R2DBC Connection URL

r2dbc:pool:postgresql://localhost:5432/database?key=value 

ConnectionFactory connectionFactory = 
ConnectionFactories.get("r2dbc:postgresql://myhost/database?
driver=foo");



What Can You Do 
Today?

● Alpha-quality and not used in production 

● Driver implementations for H2, Microsoft 
SQL Server, PostgreSQL, r2dbc-over-
adba 
● Batching  
● Extensive Type Conversion 
● Savepoints  
● Transactions 
● Transaction Isolation 
● Leveraging Database-specific 

features



R2DBC Eco-
System

● Specification documentation 
● Driver implementations 

● R2DBC SPI 
● R2DBC Proxy 
● Connection Pooling 

● Community 
● MySQL Driver 

● Client Implementations 
● Spring Data R2DBC 
● r2dbc-client



R2DBC Proxy
● Interception Proxy 

● Community Contribution 
● Top-Level R2DBC Project 

● Observability 
● Metrics 
● Tracing 
● APM



What R2DBC 
gives you

● Move Thread congestion out of JVM 
● Achieve more with less Threads 

● Doesn’t change law of physics 

● Database laws still apply 
● Obey wire protocol rules 
● ACID rules 



What About the 
Alternatives?

● Wrap JDBC in a thread pool 
● Unbounded queue leads to resource 

exhaustion 
● Bounded queue leads to blocking 

●
ADBA - the 🐘 in the room 

● Should use Java 9's Flow to get proper 
Reactive Streams back pressure, but 
currently implemented with 
CompletableFuture which does not 

● No implementations JARs available



Safe Harbor 
Statement

The following is intended to outline the general direction of 
Pivotal's offerings. It is intended for information purposes 
only and may not be incorporated into any contract.  Any 
information regarding pre-release of Pivotal offerings, future 
updates or other planned modifications is subject to 
ongoing evaluation by Pivotal and is subject to change. This 
information is provided without warranty or any kind, 
express or implied, and is not a commitment to deliver any 
material, code, or functionality, and should not be relied 
upon in making purchasing decisions regarding Pivotal's 
offerings. These purchasing decisions should only be based 
on features currently available.  The development, release, 
and timing of any features or functionality described for 
Pivotal's offerings in this presentation remain at the sole 
discretion of Pivotal.  Pivotal has no obligation to update 
forward looking information in this presentation.



What Does the 
Future Hold?

● Continuing additions/improvements to SPI 
● BLOB/CLOB 
● Stored Procedures 

● Additional drivers 
● DB2 
● Prefer database vendors to own drivers 

long-term 
● Need at least one additional client 

● MicroProfile, MyBatis, JDBI, jOOQ 

● Ideally, R2DBC influences ADBA (or successor) 
● Spring doesn't generally create specs, but 

we feel strongly enough to carry this 
forward



Resources

Get Engaged!

● Website 
https://r2dbc.io 

● Twitter 
@r2dbc 

● GitHub 
https://github.com/r2dbc 

● Mailing List 
https://groups.google.com/forum/#!forum/r2dbc 

● Weekly Call 
Fridays 0630 PT/0930 ET/1530 CET



Transforming How The World Builds Software

© Copyright 2019 Pivotal Software, Inc. All rights Reserved.


