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Gitlab | Intro

Single Webapp for Git-Repos, CI/CD, DevOps support

Wiki, Issue Tracker CI/CD Pipelines and more ...

Products: CE & EE, On-Prem & SaaS

License: MIT (open-core model), EE with prop features: e.g.
Pricing: Free (2000 Cl minutes/month), 4~99S p.User/p.month

https://about.gitlab.com/
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Gitlab Features
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https://about.gitlab.com/

* Project Planning
* |deation Tickets
* Milestones

* User Stories

* Sprints

WDW Tool-Chain




Gitlab Features

: Project Management

* Milestone- & Issue-Boards

o Wiki

* Workspaces

* Permissions, RBAC

* https://docs.gitlab.com/ee/user/project/

6/28/19



https://docs.gitlab.com/ee/user/project/

Gitlab Features: Collaboration

* Web IDE
* Commit online
* Resolve conflicts
* Mark Down support
* Merge Requests
* |nline Comments & Discussions
* Multipe Approvers
* Squash & Merge
e https://docs.gitlab.com/ee/user/project/web ide/
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https://docs.gitlab.com/ee/user/project/web_ide/

Gitlab Features: CI/CD

* Pipelines
* Pipelines via File
* Visualization, History
e Triggering pipelines via commit, Web Ul, schedules, Webhooks, HTTP API
* Docker integration
* Environments
* Protected ENV variables
» Stage-scoped ENV variables
* Kubernetes Cluster Integration
* Deploy to Kubernetes
* https://docs.gitlab.com/ee/user/project/web ide/
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https://docs.gitlab.com/ee/user/project/web_ide/

Gitlab Features: License Management

WDW: License Checker for NodelS
* Checks for License Files/Notes/Headers
* Supports Whitelisting/Blacklisting of Licenses and Modules (+Versions)

Gitlab License Management

* Java, JS, Go, Ruby, Python, .Net

* Scans Dependencies for Licenses

* Scan Reports in Merge Requests

* Supports Whitelisting/Blacklisting of Licenses

e https://docs.gitlab.com/ee/user/application security/license management/
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WDW Architecture
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WDW Architecture




Cl / CD for Microservices is hard ...

* Different development & release cycles
of uServices

* System Release is distributed to uService

» System-Testing is difficult to coordinate

* Change / Version tracking
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WDW CI/CD

Requirements:

* Traceability of features:
* version/build -> commit -> user story -> requirements
* Changes over time
* Single Point of Truth:
* all deployed microservices are listed in one location Philosophy:
* Version/build
* System Tests first: Iterative
* System Tests are more important than unit-,  Small iterative changes
component-, smoke-tests Continous
* Changes are deployed with every commit to Dev
Complete System Release
* frequent system releases (days, < 1 week)
* continous releases bundles
Fast-Forward
* No way back: new features must support
backward compability
* Errors must be fixed asap, must not break system
release




WDW Stages

Current state of development (autom. deployment of
master-commits)

Developer test, smoke test

Logging & Monitoring

ci/cd pipeline

\VERE]
deployment

,S‘taging:
* Integration test / system test
e Performance test

* Customer onboarding
* Logging & Monitoring & Alerting

ci/cd pipeline

,P‘rod:
* ,Live‘-Customer
* Logging & Monitoring & Alerting

ci/cd pipeline
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WDW Deployment
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WDW Deployment
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WDW flow

App Repo:

* 1 master branch
* Feat. & Bugfix branches are merged directly to master
* No develop, no release branches

master featA featB
‘ fixA
v
Q
v Master commits will be

t released to stages
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WDW flow

Deployment Repo:

1 master branch

* Deployment of apps via Helm

* Master deploys to “development”

* Tags with —“staging” suffix deploy to ,staging’
* Tags with —“prod“ suffix deploy to ,prod“
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WDW flow




WDW flow

Premise:
‘ﬂ@n
V—V = * Incase of error, fix Error in App asap
= T} . “ . .
% * If nofix is available soon, ,lock” last working version
HEM E  — ﬁ * If features have to be rolled out, do reset head & rebase

Rollback to
last working

version

,Lock” last working
version until fix is ready
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Pros:

* Lean Git-workflow

* Efficient for testing

* Deployments are versioned

* Easy to compare releases

* Easy to track, what is deployed
* Manual Editing possible

WDW flow

Cons:

* Master only: complicated git-workflow
when commits-have to be rolled back
* only support 1 ,version” at a time
* Not suitable for SDK releases
with multiple versions in the field






