Cl/CD @ WDW?* @ Bosch

Introduction

Hai Dang Le
Techlead @ Wrongway-Driver-Warning @ Bosch

haidang.le@bosch.com

What is Bosch” Wrongway-Driver-Warning ?

Introduction: Gitlab

Agenda

Deep-Dive: WDW Architecture

Cl/CD: WDW CI/CD workflow

6/28/19

Gitlab | Intro

Single Webapp for Git-Repos, CI/CD, DevOps support

Wiki, Issue Tracker CI/CD Pipelines and more ...

Products: CE & EE, On-Prem & SaaS

License: MIT (open-core model), EE with prop features: e.g.
Pricing: Free (2000 Cl minutes/month), 4~99S p.User/p.month

https://about.gitlab.com/

6/28/19

Gitlab Features

U B B & @ 8 4 % W -

Manage Plan Create Verify Package Secure Release Configure Monitor Defend
Since 2016 Since 2011 Since 2011 Since 2012 Since 2016 Since 2017 Since 2016 Since 2018 Since 2016 Onour
GitLab added: GitLabadded: GitLabadded: GitLabadded: GitLabadded: GitLabadded: GitLabadded: GitLab added: GitLab added: roadmap:
el Audit Project Source Code Continuous Container SAST Continuous Auto DevOps Metrics Runtime
! a‘ 52 Management Management Management Integration (Cl) Registry Delivery (CD) Application Self
single Secret Kubernetes Logging Protection
application Authentication ~Kanban Boards ~ Code Review Code Quality Maven Detection Release Configuration .
forthe and . . o 7 Repository Orchestration Tracing Web
o Authorization Time Tracking Wiki Performance DAST ChatOps Cluster Application
DevO, Testing NPM Registry Pages .
SRB Cycle Analytics Agile Portfolio Web IDE Dependency Runbook Monitoring Firewall
lifecycle. Management Dependency Scanning Reviewapps Configuration h
Snippets Error Tracking Threat
DevOps Score Proxy .
Service Desk Container Incremental Serverless Detection
N Incident
On our Scanning Rollout .
Management Behavior
Onour roadmap: .
License Feature Flags Analytics
roadmap: 5 N .
o a b R:)fgem anagemen q Vulnerability
nour stem Testin| egist! n our
4 Y e Vulnerability Management
roadmap: roadmap:
On our Usability Linux Package Database On our Data Loss
Code Analytics roadmap: On our Testing Registry roadmap: Paas On our Prevention
roadmap: On our roadmap:
Value Stream Requirements Accessibility Helm Chart Release Chaos .
roadmap: Container
Management Management Design Testing Registry Governance Engineering Synthetic Network
Management IAST Monitoring N
Workflow Quality Compatibility ~ Conan Package Secrets Cluster Cost Security
Policies Management Live Coding Testing Repository Fuzzing Management Optimization Status Page
GitLab g g a n .
MICRO)
could IMAERE ‘FogBugz u (\) (“\) ») o p X) @
replace - codefresh codefresh Spinnaker N 4

6/28/19 Quelle: https://about.gitlab.com

https://about.gitlab.com/

* Project Planning
* |deation Tickets
* Milestones

* User Stories

* Sprints

WDW Tool-Chain

Gitlab Features

: Project Management

* Milestone- & Issue-Boards

o Wiki

* Workspaces

* Permissions, RBAC

* https://docs.gitlab.com/ee/user/project/

6/28/19

https://docs.gitlab.com/ee/user/project/

Gitlab Features: Collaboration

* Web IDE
* Commit online
* Resolve conflicts
* Mark Down support
* Merge Requests
* |nline Comments & Discussions
* Multipe Approvers
* Squash & Merge
e https://docs.gitlab.com/ee/user/project/web ide/

6/28/19

https://docs.gitlab.com/ee/user/project/web_ide/

Gitlab Features: CI/CD

* Pipelines
* Pipelines via File
* Visualization, History
e Triggering pipelines via commit, Web Ul, schedules, Webhooks, HTTP API
* Docker integration
* Environments
* Protected ENV variables
» Stage-scoped ENV variables
* Kubernetes Cluster Integration
* Deploy to Kubernetes
* https://docs.gitlab.com/ee/user/project/web ide/

6/28/19

https://docs.gitlab.com/ee/user/project/web_ide/

Gitlab Features: License Management

WDW: License Checker for NodelS
* Checks for License Files/Notes/Headers
* Supports Whitelisting/Blacklisting of Licenses and Modules (+Versions)

Gitlab License Management

* Java, JS, Go, Ruby, Python, .Net

* Scans Dependencies for Licenses

* Scan Reports in Merge Requests

* Supports Whitelisting/Blacklisting of Licenses

e https://docs.gitlab.com/ee/user/application security/license management/

6/28/19

10

https://docs.gitlab.com/ee/user/application_security/license_management/

2
\ —_—
o

WDW Architectu

/‘ ‘ x\‘\.@

LI

é wé

WDW Architecture

6/28/19

WDW Architecture

Cl / CD for Microservices is hard ...

* Different development & release cycles
of uServices

* System Release is distributed to uService

» System-Testing is difficult to coordinate

* Change / Version tracking

6/28/19

WDW CI/CD

14

WDW CI/CD

Requirements:

* Traceability of features:
* version/build -> commit -> user story -> requirements
* Changes over time
* Single Point of Truth:
* all deployed microservices are listed in one location Philosophy:
* Version/build
* System Tests first: Iterative
* System Tests are more important than unit-, Small iterative changes
component-, smoke-tests Continous
* Changes are deployed with every commit to Dev
Complete System Release
* frequent system releases (days, < 1 week)
* continous releases bundles
Fast-Forward
* No way back: new features must support
backward compability
* Errors must be fixed asap, must not break system
release

WDW Stages

Current state of development (autom. deployment of
master-commits)

Developer test, smoke test

Logging & Monitoring

ci/cd pipeline

\VERE]
deployment

,S‘taging:
* Integration test / system test
e Performance test

* Customer onboarding
* Logging & Monitoring & Alerting

ci/cd pipeline

,P‘rod:
* ,Live‘-Customer
* Logging & Monitoring & Alerting

ci/cd pipeline

16

WDW Deployment

_&
T

HELM

Single Deployment Repo

- R
Oﬁ!

Configuration Repo

6/28/19 17

WDW Deployment

here you develop

feat/bugfixes

here you

deploy/version the
—
Y system
' [1SO |

J

'
S

App Repos

vy

>
here you HELM

parameterize the

M Single Deployment Repo

)\ N

seoer) . Q@
Y -
* o ’
Configuration Repo _ﬁ—

6/28/19 18

6/28/19

WDW flow

App Repo:

* 1 master branch
* Feat. & Bugfix branches are merged directly to master
* No develop, no release branches

master featA featB
‘ fixA
v
Q
v Master commits will be

t released to stages

19

WDW flow

Deployment Repo:

1 master branch

* Deployment of apps via Helm

* Master deploys to “development”

* Tags with —“staging” suffix deploy to ,staging’
* Tags with —“prod“ suffix deploy to ,prod“

(

A 4

Master / d
3) ;J‘_‘_‘\ L_;‘—‘—‘
p 'lo—o—o', l‘o—o—o,‘
t
6/28/19

v

v

20

WDW flow

WDW flow

Premise:
‘ﬂ@n
V—V = * Incase of error, fix Error in App asap
= T} . “ . .
% * If nofix is available soon, ,lock” last working version
HEM E — ﬁ * If features have to be rolled out, do reset head & rebase

Rollback to
last working

version

,Lock” last working
version until fix is ready

T

Master / d -
S l ' ' ' ' | >
\ \ \
p (oo [o—o—e] (oo
t
6/28/19 22

11

iy —p
o v — &
Pros:

* Lean Git-workflow

* Efficient for testing

* Deployments are versioned

* Easy to compare releases

* Easy to track, what is deployed
* Manual Editing possible

WDW flow

Cons:

* Master only: complicated git-workflow
when commits-have to be rolled back
* only support 1 ,version” at a time
* Not suitable for SDK releases
with multiple versions in the field

