
CI/CD @ WDW* @ Bosch

* Wrongway-Driver-Warning. 



Introduction
Hai Dang Le
Techlead @ Wrongway-Driver-Warning @ Bosch

haidang.le@bosch.com



6/28/19 3

Agenda

What is Bosch’ Wrongway-Driver-Warning ?

Introduction: Gitlab

Deep-Dive: WDW Architecture

CI/CD: WDW CI/CD workflow



6/28/19 4

Gitlab | Intro
Single Webapp for Git-Repos, CI/CD, DevOps support

Wiki, Issue Tracker CI/CD Pipelines and more …

Products: CE & EE, On-Prem & SaaS

License: MIT (open-core model), EE with prop features: e.g.

Pricing: Free (2000 CI minutes/month), 4~99$ p.User/p.month

https://about.gitlab.com/



Gitlab Features

6/28/19 5Quelle: https://about.gitlab.com

https://about.gitlab.com/


WDW Tool-Chain

• Project Planning
• Ideation Tickets
• Milestones
• User Stories
• Sprints

6/28/19 6

• SCM
• Web IDE
• Documentation:

• Markdown
• PlantUML

• RBAC for Repos

• Linting
• Code Format
• Unit Tests
• Code Reviews

• Containerization
• Docker Registry
• NPM, Maven

• Container Scans
• Vulnerability 

Scans
• License Checks

• Kubernetes 
Deployment

• Helm Charts
• Environments
• Release 

Versioning

• Configuration 
Management

• Secret 
Management

• Splunk
• Azure 

Monitoring



Gitlab Features: Project Management

6/28/19 7

• Milestone- & Issue-Boards
• Wiki
• Workspaces
• Permissions, RBAC
• https://docs.gitlab.com/ee/user/project/

https://docs.gitlab.com/ee/user/project/


Gitlab Features: Collaboration

6/28/19 8

• Web IDE
• Commit online
• Resolve conflicts
• Mark Down support

• Merge Requests
• Inline Comments & Discussions
• Multipe Approvers
• Squash & Merge

• https://docs.gitlab.com/ee/user/project/web_ide/

https://docs.gitlab.com/ee/user/project/web_ide/


Gitlab Features: CI/CD

6/28/19 9

• Pipelines

• Pipelines via File

• Visualization, History

• Triggering pipelines via commit, Web UI, schedules, Webhooks, HTTP API

• Docker integration

• Environments

• Protected ENV variables

• Stage-scoped ENV variables

• Kubernetes Cluster Integration

• Deploy to Kubernetes

• https://docs.gitlab.com/ee/user/project/web_ide/

https://docs.gitlab.com/ee/user/project/web_ide/


Gitlab Features: License Management

6/28/19 10

WDW: License Checker for NodeJS
• Checks for License Files/Notes/Headers
• Supports Whitelisting/Blacklisting of Licenses and Modules (+Versions)

Gitlab License Management 
• Java, JS, Go, Ruby, Python, .Net
• Scans Dependencies for Licenses
• Scan Reports in Merge Requests
• Supports Whitelisting/Blacklisting of Licenses
• https://docs.gitlab.com/ee/user/application_security/license_management/

https://docs.gitlab.com/ee/user/application_security/license_management/


WDW Architecture

6/28/19 11

1

2

3
5

4

6

7

8

9

A



WDW Architecture

6/28/19 12



WDW Architecture

6/28/19 13

Demo



WDW CI/CD

6/28/19 14

2

3
5

4

6 9

A

CI / CD for Microservices is hard …

• Different development & release cycles

of μServices

• System Release is distributed to μService

• System-Testing is difficult to coordinate

• Change / Version tracking



WDW CI/CD

6/28/19 15

Philosophy:

• Iterative
• Small iterative changes

• Continous
• Changes are deployed with every commit to Dev

• Complete System Release
• frequent system releases (days, < 1 week)
• continous releases bundles

• Fast-Forward
• No way back: new features must support

backward compability
• Errors must be fixed asap, must not break system

release

Requirements:

• Traceability of features:
• version/build -> commit -> user story -> requirements
• Changes over time

• Single Point of Truth:
• all deployed microservices are listed in one location
• Version/build

• System Tests first:
• System Tests are more important than unit-, 

component-, smoke-tests

t



WDW Stages

6/28/19 16

‚D‘ev:
• Current state of development (autom. deployment of

master-commits)
• Developer test, smoke test
• Logging & Monitoring

‚S‘taging:
• Integration test / system test
• Performance test
• Customer onboarding
• Logging & Monitoring & Alerting

‚P‘rod:
• ‚Live‘-Customer
• Logging & Monitoring & Alerting

ci/cd pipeline

ci/cd pipeline

ci/cd pipeline

Manual 
deployment

Telepresence.io



WDWDeployment

6/28/19 17

App Repos

Configuration Repo

Single Deployment Repo



WDWDeployment

6/28/19 18

App Repos

Configuration Repo

Single Deployment Repo

here you develop
feat/bugfixes

here you
deploy/version the

system

here you
parameterize the

stages



WDW flow

6/28/19 19

App Repo:

• 1 master branch
• Feat. & Bugfix branches are merged directly to master
• No develop, no release branches

t

master featA

fixA

featB

Master commits will be
released to stages



WDW flow

6/28/19 20

Deployment Repo:

• 1 master branch
• Deployment of apps via Helm
• Master deploys to “development“
• Tags with –“staging“ suffix deploy to „staging“
• Tags with –“prod“ suffix deploy to „prod“

t

p

s

Master / d



WDW flow

6/28/19 21

Pros:

• Lean Git-workflow
• Efficient for testing
• Easy to track changes
• Deployments are versioned
• Easy to create Release Notes
• Manual Editing possible

Cons:

• Errors stop releases of features in respective App
• Unless rebasing is done

• only support 1 „version“ at a time
• Not suitable for SDK releases
with multiple versions in the field

Demo



Rollback to
last working
version

WDW flow

6/28/19 22

t

p

s

Master / d

„Lock“ last working
version until fix is ready

Premise:

• In case of error, fix Error in App asap
• If no fix is available soon, „lock“ last working version
• If features have to be rolled out, do reset head & rebase



WDW flow

6/28/19 23

Pros:

• Lean Git-workflow
• Efficient for testing
• Deployments are versioned
• Easy to compare releases
• Easy to track, what is deployed
• Manual Editing possible

Cons:

• Master only: complicated git-workflow
when commits-have to be rolled back

• only support 1 „version“ at a time
• Not suitable for SDK releases
with multiple versions in the field



THANK YOU


