
<Insert Picture Here>

Peter Doschkinow
Senior Java Architect

Java EE 7: the New Cloud Platform

The following/preceding is intended to outline our
general product direction. It is intended for
information purposes only, and may not be
incorporated into any contract. It is not a
commitment to deliver any material, code, or
functionality, and should not be relied upon in
making purchasing decisions.
The development, release, and timing of any
features or functionality described for Oracle’s
products remains at the sole discretion of Oracle.

 3

Agenda

• Why Java EE as PaaS
• Java EE 7 as PaaS
– Services
– Deployment
– Multi-tenancy
– Roles

• Demo
• Java EE 7 API and Status

 4

Cloud Computing Service Models: IaaS, PaaS, SaaS

 5

The Java PaaS Marketplace

• Increasing number of vendors, but very different,
vendor-specific offerings
– Amazon Elastic Beanstalk
– Google App Engine
– Windows Azure
– VmWare Cloud Foundry
– CloudBees
– Jelastic
– Oracle Cloud Java service

 6

PaaS Features and Promises

• Easier to use than IaaS: just deploy customer-created
applications on provided middleware-stack/framework

• Using languages and tools supported by PaaS Provider
• No control of underlying cloud infrastructure
• Control over deployed applications and hosting

environment configurations
• Automatic elasticity
• Better developer productivity, lower cost of

management and faster time-to-market
• Cloud service model best suited for developers

 7

PaaS and Java EE
Java EE design principles and capabilities

• Common programming model for enterprise developers
• Runtime handles application’s infrastructure concerns
• Declarative resource references
• Scalable (scale-out) component models

© 2010 Oracle Corporation – Proprietary

Java EE 7 Focus: PaaS

• Provide way for customers and users to leverage
public, private, and hybrid clouds in a standard way

• PaaS support entails evolutionary change
• Next logical step for Java EE

– J2EE → Java EE 6 : The Java EE Platform provides services
– Java EE 7 : The Java EE Platform IS a service

 9

Java EE 7 PaaS Roadmap

• Add metadata
– For service provisioning and configuration
– For QoS, elasticity
– For sharing of applications and resources
– For (re)configurability and customization

• Add useful APIs for cloud environment
– JAX-RS client API, Caching API, State Management, JSON,…

• Extend existing APIs with support for multitenancy
• Define new platform roles to accommodate PaaS model

© 2010 Oracle Corporation – Proprietary

Java EE 7 Design Goals

Java EE 7

Multi-Tenancy

Service Definition
& Orchestration

Elasticity

New Roles

JMS 2.0

Caching API

JSON API

Expanded CDI
& REST Support

Broad Industry
Participation

Build on EE 6
Momentum

 11

Java EE 7 as PaaS

• Tenant applications consume
services

• PaaS administrators host,
configure, and manage
application and infrastructure
services

• Existing APIs in Java EE need
to be updated to be service-
enabled and tenant-aware
– pluggable services are

necessary

Queuing
Service

Persistence
Service

Caching
Service

Tenant
Service

Infrastructure as a Service

Platform as a Service - Services

…

HTTP LB
Service

DB
Service

PaaS Infrastructure Services
Orchestration

Service

Java EE Application Level Services

Tenant App Tenant App Tenant App

Virt VIP VLAN Volume LBR

IaaS Infrastructure Services

…

 12

Java EE Services

• Cloud apps consume services
• Persistence, queueing, mail, caching, …
• Service metadata facilitates ease of use when

deploying into the cloud

@DataSourceDefinition(
 name=“java:app/jdbc/myDB”,
 className=“oracle.jdbc.pool.OracleDataSource”,
 isolationLevel=TRANSACTION_REPEATABLE_READ,
 initialPoolSize=5
)

 13

Java EE Services

• Cloud apps consume services
• Persistence, queueing, mail, caching, …
• Service metadata facilitates ease of use when

deploying into the cloud

@JMSConnectionFactoryDefinition(
name="java:app/MyJMSCF",
className="javax.jms.QueueConnectionFactory",
resourceAdapterName="myJMSRA")

@JMSDestinationDefinition(
name="java:app/MyJMSQueue",
className="javax.jms.Queue",
destinationName="myQueue1")

 14

Java EE Services

• Cloud apps consume services
• Persistence, queueing, mail, caching, …
• Service metadata facilitates ease of use when

deploying into the cloud

@MailSessionDefinition(
name="java:app/mail/MySession",
host="somewhere.myco.com",
from="some.body@myco.com")

 15

Java EE Services

• Cloud apps consume services
• Persistence, queueing, mail, caching, …
• Service metadata facilitates ease of use when

deploying into the cloud

@ConnectorResourceDefinition(
name="java:app/myCustomConnector",
className="com.extraServices.CustomConnector")

 16

Java EE 7 Service

• An entity that is created, provisioned, managed, and
monitored by or for the PaaS runtime/infrastructure

• A significant software function that is needed to execute
an application

• Types
– Provisioned - installed, configured, and managed by the

platform; application scoped or shared
– External - already exist in the enterprise, platform is configured

to know about them
– How it is shared - used by single or multiple environments, per-

tenant or global

• Examples: LB, database, Java EE application service

 17

Specification of Service Metadata

• Service Definition
– Metadata used to provision and configure a Service

• Service characteristics (functional and non-functional)
specification → Template matching

• Explicit Template specification

• Service(resource) Reference
– Represents an application component's dependency on a Service
– User specified through deployment descriptors or annotations

• Optional
– When not specified(vanilla EE app), Orchestration Engine

automatically handles service dependencies using default service
definitions/templates

 18

PaaS Implications on Deployment

• Simplified PaaS application deployment
– Single-click, self-service, “puch to cloud”

 19

Traditional Java EE App Deployment

 20

Java EE 7 PaaS App Deployment

 21

Java EE 7 Elasticity

• Cluster elasticity :
– Metrics provided by application
– Application Server metrics (response time, etc..)
– Virtual Machine information (CPU, Memory, Disk usages)

• Metrics sources
– JMX Mbeans, JVM Monitoring tools, native tools

Elasticity Continuum

Single Node
Non-Elastic Dynamic Self Adjusting

SLA Driven Elasticity
Java EE Multi-Node

Multi-Instance Clustering

Java EE 7 Focus

Java EE Cluster

Capacity on Demand

Elastic Cluster

 22

Java EE 7 Multitenancy
Limited form of SaaS

• Support for separate isolated instances of the same app
for different tenants
– Multitenant apps are declared as such
– Tenants correspond to units of isolation
– One application instance per tenant
– Each instance customized and deployed for a single tenant

• Mapping to tenant done by the container
• Tenant id available to application
– E.g., under java:comp/tenantId or by injection

 23

Java EE 7 Roles

Developer

PaaS
Customer/

Tenant

Application
Submitter

Application
Administrator

PaaS Provider

PaaS Product
Provider

PaaS Account
Manager

PaaS
Administrator

Deployer
Tenant 1 Tenant 2 Tenant 3

Machine

JVM JVM JVM

Machine

JVM JVM JVM

Machine

JVM JVM JVM

Machine

JVM JVM JVM

Machine

JVM JVM JVM

Machine

JVM JVM JVM

End-User

 24

GlassFish Server 4.0

• Java EE 7 reference implementation
• Virtualization implementations
– Laptop mode

• Runs processes on the bare metal operating system.
– Local mode

• Locally installed hypervisor
• Best fidelity to deployment scenario

– Remote mode
• Connects to remote hypervisors

• Transparent development

 25

GlassFish PaaS Architecture

 26

Service Dependency Discovery and Provisioning

 27

Service Association

 28

PaaSing a Java EE Application
GlassFish 4.0 Demo at JavaOne: http://glassfish.org/javaone2011

<glassfish-services>
<service-description init-type="LB" name="ConferencePlanner-lb">
 <template id="LBNative"/>
 <configurations>
 <configuration name="https-port" value="50443"/>
 <configuration name="ssl-enabled" value="false"/>
 <configuration name="http-port" value="50080"/>
 </configurations></service-description>
<service-description init-type="JavaEE" name="ConferencePlanner">
 <characteristics>
 <characteristic name="service-type" value="JavaEE"/>
 </characteristics>
 <configurations>
 <configuration name="max.clustersize" value="4"/>
 <configuration name="min.clustersize" value="2"/>
 </configurations>
</service-description>
. . .
</glassfish-services>

 29

Demo

• Dynamic service provisioning
– Service dependencies are discovered from metadata and by

application archive introspection
– Discovered services (Java EE, database, load balancer) are

provisioned

• Highly available cluster
– With session failover

• Elasticity using auto-scaling
– The Java EE cluster is automatically resized to meet growing

demands

 30

Java EE 7 is not just Cloud-y

• Alignment of ManagedBeans across CDI, EJB, JSF,…
– POJO → ManagedBean → Enterprise JavaBean
– Extension of container-managed transactions beyond EJB

• Further simplifications for ease-of-development
– JMS 2.0 focus on ease-of-development
– Expanded use of dependency injection
– Expanded service metadata; improved configuration

• Pruning
– EJB CMP and BMP, JAX-RPC, Deployment API

• Update to Web Profile

 31

Java EE 7 JSRs

JPA 2.1

Managed Beans 1.0 EJB 3.2

CDI 1.1 / Interceptors 1.1 / JSR 250 1.1

Servlet 3.1

CDI
Extensions

JSP 2.2
EL 3.0JSF 2.2JAX-RS

2.0
Web

Container
Extensions

JMS 2.0

Jcache 1.0
(JSR 107)

Concurrency
Utilities 1.0
(JSR 236)

State
Management 1.0

(JSR 350

Batch Processing 1.0
(JSR 352)

JSON 1.0
(JSR 353)

JTA 1.1

B
ean Validation 1.1

WebSockets 1.0
(JSR 356)

 32

Transparency Checklist
http://jcp.org/en/resources/transparency

• Our Java EE 7 JSRs are run in the open on java.net
– http://javaee-spec.java.net
– One project per spec – e.g., jpa-spec, jax-rs-spec, jms-spec, …

• Publicly viewable Expert Group mail archive
– Users observer list gets copies of all Expert Group emails

• Publicly viewable download area
• Publicly viewable issue tracker
• Commitment to match JCP 2.8 Process

 33

Java EE 7 Status and Schedule

• All JSRs up and running
• Early drafts available for:

– Java EE 7 (JSR 342)
– Expression Language 3.0 (JSR 341)
– Java Message Service 2.0 (JSR 343)
– Enterprise JavaBeans 3.2 (JSR 345)
– Contexts and Dependency Injection 1.1 (JSR 346)
– Bean Validation 1.1 (JSR 349)
– JavaServer Faces 2.2 (JSR 344)
– Java Persistence API 2.1 (JSR 338)
– Java API for RESTful Services 2.0 (JSR 339)

• Final release by Q2 2013
• Date-driven release: anything not ready will be deferred

 34

Links

• Java EE 7 java.net project
– Archives, documents, mailing lists,…
– http://java.net/projects/javaee-spec

• Component projects
– http://java.net/projects/XXX-spec

 (where XXX = jpa, ejb, jms, servlet, jax-rs, jsf,…)

• GlassFish – Java EE 7 reference implementation
– http://glassfish.org

• Feedback
– users@javaee-spec.java.net

<Insert Picture Here>

Peter Doschkinow
Senior Java Architect

Java EE 7: the new Cloud Platform

 36

PaaS and Multi-tenancy: Some Models

• PaaS Platform on Demand
– New runtime stack for each tenant

• PaaS Multitenant Containers
– Isolated app partitions per tenant with shared

runtime

• SaaS Multitenant Applications (SaaS-full)
– Shared app instances, with tenant-specific

customization

• SaaS-limited
– Separate app instances, with tenant-specific

customizations

1

1 2

2

1 2

1 2

 37

Java Message Service 2.0

• Simplified API
– Less verbose
– Reduce the number of objects needed to send/receive message
– Allow resource injection
– Alternative, not replacement for standard API

• New mandatory API for integration of any JMS 2.0
provider with any Java EE server

• Connection, Session and other objects are
AutoClosable

 38

Java Message Service 2.0
sending a message the old way

@Resource(lookup = "jms/connectionFactory ")
ConnectionFactory connectionFactory;
@Resource(lookup="jms/inboundQueue")
Queue inboundQueue;
public void sendMessageOld (String payload) {
 Connection connection = null;
 try {
 connection = connectionFactory.createConnection();
 Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
 MessageProducer messageProducer = session.createProducer(inboundQueue);
 TextMessage textMessage = session.createTextMessage(payload);
 messageProducer.send(textMessage);
 }
 catch (JMSException e) {
 // do something
 } finally {
 try {
 if (connection != null)
 connection.close();
 } catch (JMSException e2) {
 // do something else }}}

 39

Java Message Service 2.0
sending a message the new way

@Resource(lookup = "jms/connectionFactory")
ConnectionFactory connectionFactory;
@Resource(lookup="jms/inboundQueue")
Queue inboundQueue;

public void sendMessageNew (String payload) {
 try (JMSContext context = connectionFactory.createContext();){
 context.send(inboundQueue,payload);
 }
}

	Title of Presentation
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39

