Writing an OS-Loader in
Rust with uefi-rs

JUG Saxony e.V. Event Series @ TU Dresden, APB — 2025-11-06 Philipp Schuster, Cyberus Technology

1. Introduction

2/45

1.0 Outlook

3/45

1.0 Outlook

= UEFI is a firmware interface making things easier

3/45

1.0 Outlook

= UEFI is a firmware interface making things easier

= Hardware manufacturers

3/45

1.0 Outlook

= UEFI is a firmware interface making things easier
» Hardware manufacturers

= Firmware developers

3/45

1.0 Outlook

= UEFI is a firmware interface making things easier
» Hardware manufacturers
= Firmware developers

= Software developers

3/45

1.0 Outlook

= UEFI is a firmware interface making things easier
» Hardware manufacturers
= Firmware developers
= Software developers

= uyefi-rs is aconvenientlibrary for UEFI in Rust

3/45

1.0 Outlook

= UEFI is a firmware interface making things easier
» Hardware manufacturers
= Firmware developers
= Software developers

= uyefi-rs is aconvenientlibrary for UEFI in Rust

= Convenient high-level* abstractions for OS-loaders / bootloaders

*High-level from a low-level perspective. Not Python- or Java-like high-level. 3/45

1.1 About Me

4/45

1.1 About Me

= Philipp Schuster, Dresden ==

4745

1.1 About Me

= Philipp Schuster, Dresden ==
= Working at Cyberus Technology as

Software Engineer

4/45

1.1 About Me

= Philipp Schuster, Dresden ==
= Working at Cyberus Technology as
Software Engineer

= Nix and NixOS enthusiast

4/45

1.1 About Me

= Philipp Schuster, Dresden ==

= Working at Cyberus Technology as
Software Engineer

= Nix and NixOS enthusiast

= Enjoy conferences and meetups

4/45

1.1 About Me

= Philipp Schuster, Dresden ==

= Working at Cyberus Technology as
Software Engineer

= Nix and NixOS enthusiast

= Enjoy conferences and meetups

= QOrganizing Systems Meetup

4/45

1.1 About Me

= Philipp Schuster, Dresden == = GitHub @phip1611
= Working at Cyberus Technology as
Software Engineer
= Nix and NixOS enthusiast
= Enjoy conferences and meetups

= QOrganizing Systems Meetup

4/45

https://github.com/phip1611

1.1 About Me

= Philipp Schuster, Dresden == = GitHub @phip1611

= Working at Cyberus Technology as = Reddit @phip1611
Software Engineer

= Nix and NixOS enthusiast

= Enjoy conferences and meetups

= QOrganizing Systems Meetup

4/45

https://github.com/phip1611
https://reddit.com/u/phip1611

1.1 About Me

= Philipp Schuster, Dresden == = GitHub @phip1611

= Working at Cyberus Technology as = Reddit @phip1611
Software Engineer = Blog phip1611.de

= Nix and NixOS enthusiast

= Enjoy conferences and meetups

= QOrganizing Systems Meetup

4/45

https://github.com/phip1611
https://reddit.com/u/phip1611
https://phip1611.de/

1.2 My Rust Experience

Working with Rust since 2019.

5745

1.2 My Rust Experience

Working with Rust since 2019.

Hobby Projects

5745

1.2 My Rust Experience

Working with Rust since 2019.

Hobby Projects

= github.com/rust-osdev

5745

https://github.com/rust-osdev

1.2 My Rust Experience

Working with Rust since 2019.

Hobby Projects

= github.com/rust-osdev

B nmultiboot2

5745

https://github.com/rust-osdev

1.2 My Rust Experience

Working with Rust since 2019.

Hobby Projects

= github.com/rust-osdev

B nmultiboot2

B (uyefi

5745

https://github.com/rust-osdev

1.2 My Rust Experience

Working with Rust since 2019.

Hobby Projects

= github.com/rust-osdev
B nmultiboot2
B Cuefi

= Author of various smaller crates

5745

https://github.com/rust-osdev

1.2 My Rust Experience

Working with Rust since 2019.

Hobby Projects Work Projects

= github.com/rust-osdev
B nmultiboot2
® (yefi

= Author of various smaller crates

5745

https://github.com/rust-osdev

1.2 My Rust Experience

Working with Rust since 2019.

Hobby Projects Work Projects

= github.com/rust-osdev = Cloud Hypervisor

B nmultiboot2
B /uefi

= Author of various smaller crates

5745

https://github.com/rust-osdev
https://github.com/cloud-hypervisor/cloud-hypervisor

1.2 My Rust Experience

Working with Rust since 2019.

Hobby Projects Work Projects

" github.com/rust-osdev " Cloud Hypervisor
" multiboot2 " rust-vmm ecosystem
® (uefi

= Author of various smaller crates

5745

https://github.com/rust-osdev
https://github.com/cloud-hypervisor/cloud-hypervisor

1.3 My Relation to JUG Saxony e.V.

6/45

1.3 My Relation to JUG Saxony e.V.

= Started studying computer science in October 2015

6/45

1.3 My Relation to JUG Saxony e.V.

= Started studying computer science in October 2015
= Started student software engineer ("Werkstudent") position at Telekom MMS

(T-Systems Multimedia Solutions GmbH)

6/45

1.3 My Relation to JUG Saxony e.V.

= Started studying computer science in October 2015

= Started student software engineer ("Werkstudent") position at Telekom MMS
(T-Systems Multimedia Solutions GmbH)

= JUG Saxony Day

6/45

1.3 My Relation to JUG Saxony e.V.

= Started studying computer science in October 2015

= Started student software engineer ("Werkstudent") position at Telekom MMS
(T-Systems Multimedia Solutions GmbH)

= JUG Saxony Day
= 2018

6/45

1.3 My Relation to JUG Saxony e.V.

= Started studying computer science in October 2015

= Started student software engineer ("Werkstudent") position at Telekom MMS
(T-Systems Multimedia Solutions GmbH)

= JUG Saxony Day
= 2018
= 2022 (Speaker)

6/45

1.3 My Relation to JUG Saxony e.V.

= Started studying computer science in October 2015
= Started student software engineer ("Werkstudent") position at Telekom MMS
(T-Systems Multimedia Solutions GmbH)
= JUG Saxony Day
= 2018
= 2022 (Speaker)
= 2025

6/45

1.3 My Relation to JUG Saxony e.V.

= Started studying computer science in October 2015
= Started student software engineer ("Werkstudent") position at Telekom MMS
(T-Systems Multimedia Solutions GmbH)
= JUG Saxony Day
= 2018
= 2022 (Speaker)
= 2025

= Personally met Falk Hartmann at EuroRust 2024 in Vienna

6/45

1.4 About Cyberus Technology

7745

1.4 About Cyberus Technology

= Founded 2017 by 6 founders in Dresden (today =30)

7745

1.4 About Cyberus Technology

= Founded 2017 by 6 founders in Dresden (today =30)
= |ndependent, profitable

7745

1.4 About Cyberus Technology

= Founded 2017 by 6 founders in Dresden (today =30)

= |ndependent, profitable
= World-class expertise in x86 and virtualization

7745

1.4 About Cyberus Technology

= Founded 2017 by 6 founders in Dresden (today =30)

= |ndependent, profitable
= World-class expertise in x86 and virtualization

= Main products

7745

1.4 About Cyberus Technology

= Founded 2017 by 6 founders in Dresden (today =30)

= |ndependent, profitable
= World-class expertise in x86 and virtualization

= Main products
= Cyberus Hypervisor (Cloud Hypervisor + Linux/KVM + Service & Expertise)

7145

1.4 About Cyberus Technology

= Founded 2017 by 6 founders in Dresden (today =30)

= |ndependent, profitable
= World-class expertise in x86 and virtualization

= Main products
= Cyberus Hypervisor (Cloud Hypervisor + Linux/KVM + Service & Expertise)

m CTRL-OS (NixOS LTS + Embedded System Building Blocks)

7145

1.4 About Cyberus Technology

8745

1.4 About Cyberus Technology

= (Cloud department

8745

1.4 About Cyberus Technology

= (Cloud department
= Public European cloud developed with SAP ("Apeiro")

Cyberus is responsible for virtualization layer

8745

1.4 About Cyberus Technology

= (Cloud department
= Public European cloud developed with SAP ("Apeiro")
Cyberus is responsible for virtualization layer

= Soon BSI*-accredited virtualization stack with open-source software

= Cloud Hypervisor/KVM will be accredited

* BSI: Bundesamt fur Sicherheit in der Informationstechnik 8 /45

1.4 My Role at Cyberus Technology

9/45

1.4 My Role at Cyberus Technology

= 2021-05 - 2022-05: Student software engineer

Diplomarbeit (Master's Thesis)

9/45

1.4 My Role at Cyberus Technology

= 2021-05 - 2022-05: Student software engineer
Diplomarbeit (Master's Thesis)

= 2022-06 - present: Full time software engineer

9/45

4 My Role at Cyberus Technology

2021-05 - 2022-05: Student software engineer
Diplomarbeit (Master's Thesis)
2022-06 - present: Full time software engineer

Everything "low in the stack"

9/45

1.4 My Role at Cyberus Technology

= 2021-05 - 2022-05: Student software engineer
Diplomarbeit (Master's Thesis)

= 2022-06 - present: Full time software engineer

= Everything "low in the stack"

» Rust, C/C++, Assembly, ...

9/45

4 My Role at Cyberus Technology

2021-05 - 2022-05: Student software engineer
Diplomarbeit (Master's Thesis)

2022-06 - present: Full time software engineer
Everything "low in the stack"

» Rust, C/C++, Assembly, ...

= libvirt, Linux kernel, GRUB, UEFI/edk?2...

9/45

4 My Role at Cyberus Technology

2021-05 - 2022-05: Student software engineer
Diplomarbeit (Master's Thesis)

2022-06 - present: Full time software engineer
Everything "low in the stack"

» Rust, C/C++, Assembly, ...

= libvirt, Linux kernel, GRUB, UEFI/edk?2...

Nix, NixOS, and nixpkgs

9/45

1.4 My Role at Cyberus Technology

2021-05 - 2022-05: Student software engineer
Diplomarbeit (Master's Thesis)

2022-06 - present: Full time software engineer
Everything "low in the stack"

» Rust, C/C++, Assembly, ...

= libvirt, Linux kernel, GRUB, UEFI/edk?2...

Nix, NixOS, and nixpkgs

Conferences, Networking, Meetups

Organizing Dresden Systems Meetup

9/45

1.4 My Role at Cyberus Technology

10745

1.4 My Role at Cyberus Technology

= Main contributor to Cloud Hypervisor

10745

1.4 My Role at Cyberus Technology

= Main contributor to Cloud Hypervisor
= Virtual Machine Monitor (VMM) utilizing Linux/KVM

10745

1.4 My Role at Cyberus Technology

= Main contributor to Cloud Hypervisor
= Virtual Machine Monitor (VMM) utilizing Linux/KVM
= Akin to VirtualBox or QEMU

10745

1.4 My Role at Cyberus Technology

= Main contributor to Cloud Hypervisor
= Virtual Machine Monitor (VMM) utilizing Linux/KVM
= Akin to VirtualBox or QEMU

» Tailored to cloud usecase

10745

1.4 My Role at Cyberus Technology

= Main contributor to Cloud Hypervisor
= Virtual Machine Monitor (VMM) utilizing Linux/KVM
= Akin to VirtualBox or QEMU
= Tailored to cloud usecase

= Virtualization requires understanding every concept of the platform and

typical software stack.

10745

1.5 What (Not) To Expect

11745

1.5 What (Not) To Expect

= We have time (60 min) = no rush

11745

1.5 What (Not) To Expect

= We have time (60 min) = no rush
= Qverview of how an x86 computer works

- Give you a good understanding of the x86 platform.

11745

1.5 What (Not) To Expect

= We have time (60 min) = no rush
= Qverview of how an x86 computer works
- Give you a good understanding of the x86 platform.

= What is Firmware?

11745

1.5 What (Not) To Expect

= We have time (60 min) = no rush
= Qverview of how an x86 computer works

- Give you a good understanding of the x86 platform.
= What is Firmware?

= UEFI: Context + Concepts

11745

1.5 What (Not) To Expect

= We have time (60 min) = no rush
= Qverview of how an x86 computer works
- Give you a good understanding of the x86 platform.
= What is Firmware?
= UEFI: Context + Concepts

= Rust library ("crate") uefi-rs

11745

1.5 What (Not) To Expect

= We have time (60 min) = no rush
= Qverview of how an x86 computer works
- Give you a good understanding of the x86 platform.
= What is Firmware?
= UEFI: Context + Concepts

= Rust library ("crate") uefi-rs

= Code & Demo: Example UEFI OS-loader

* Same thing, different name: OS-loader, OS-specific loader, bootloader 11745

1.6 Goal of an OS Project

Why does one need to understand the firmware?

12745

1.6 Goal of an OS Project

Why does one need to understand the firmware?

= Fully bootstrapped system (Desktop environment, sound, ...)

12745

1.6 Goal of an OS Project

Why does one need to understand the firmware?

= Fully bootstrapped system (Desktop environment, sound, ...)

= Kernel running in 64-bit mode

12745

1.6 Goal of an OS Project

Why does one need to understand the firmware?

= Fully bootstrapped system (Desktop environment, sound, ...)

= Kernel running in 64-bit mode
= Firmware (UEFI) eventually leads to our kernel being loaded

- We need to understand UEFI

12745

2. Background

13745

2.1 How does a Computer Boot?

14745

2.1 How does a Computer Boot?

Hardware

14745

2.1 How does a Computer Boot?

Firmware (e.g., UEFI)

Hardware

14745

2.1 How does a Computer Boot?

Bootloader / OS-Loader
Firmware (e.g., UEFI)

Hardware

14745

2.1 How does a Computer Boot?

Kernel (Linux, Windows)
Bootloader / OS-Loader
Firmware (e.g., UEFI)

Hardware

14745

2.1 How does a Computer Boot?

Runtime Environment (Ubuntu, Windows)
Kernel (Linux, Windows)
Bootloader / OS-Loader

Firmware (e.g., UEFI)

Hardware

14745

2.1 How does a Computer Boot?

Runtime Environment (Ubuntu, Windows)
Kernel (Linux, Windows)

Bootloader / OS-Loader

Firmware (e.g., UEFI)

Hardware

14745

2.2 CPU Terminology (x86)

15745

2.2 CPU Terminology (x86)

= CPU: Central Processing Unit, computing resource:

Everyday language: refers to whole package or computing resource

15745

2.2 CPU Terminology (x86)

= CPU: Central Processing Unit, computing resource:
Everyday language: refers to whole package or computing resource

= Package/Socket/Processor*: The thing mounted onto the mainboard

* Inconsistencies even in Intel Manual (grown historically) 15745

2.2 CPU Terminology (x86)

= CPU: Central Processing Unit, computing resource:
Everyday language: refers to whole package or computing resource

= Package/Socket/Processor*: The thing mounted onto the mainboard

* Inconsistencies even in Intel Manual (grown historically) 15745

2.2 CPU Terminology (x86)

= CPU: Central Processing Unit, computing resource:
Everyday language: refers to whole package or computing resource
= Package/Socket/Processor*: The thing mounted onto the mainboard

= Core: Independent execution engine (L1, L2 caches)

* Inconsistencies even in Intel Manual (grown historically) 15745

2.2 CPU Terminology (x86)

CPU: Central Processing Unit, computing resource:
Everyday language: refers to whole package or computing resource

Package/Socket/Processor*: The thing mounted onto the mainboard

Core: Independent execution engine (L1, L2 caches)
(Logical) CPU:

* Inconsistencies even in Intel Manual (grown historically)

15745

2.2 CPU Terminology (x86)

= CPU: Central Processing Unit, computing resource:
Everyday language: refers to whole package or computing resource

= Package/Socket/Processor*: The thing mounted onto the mainboard
= Core: Independent execution engine (L1, L2 caches)

= (Logical) CPU:

= Software-visible computing resource within a core

* Inconsistencies even in Intel Manual (grown historically) 15745

2.2 CPU Terminology (x86)

= CPU: Central Processing Unit, computing resource:
Everyday language: refers to whole package or computing resource

= Package/Socket/Processor*: The thing mounted onto the mainboard

= Core: Independent execution engine (L1, L2 caches)
= (Logical) CPU:
= Software-visible computing resource within a core

= Implements the instruction set ("API of the CPU")

* Inconsistencies even in Intel Manual (grown historically) 15745

2.2 CPU Terminology (x86)

= CPU: Central Processing Unit, computing resource:
Everyday language: refers to whole package or computing resource

= Package/Socket/Processor*: The thing mounted onto the mainboard

= Core: Independent execution engine (L1, L2 caches)
= (Logical) CPU:
= Software-visible computing resource within a core
= Implements the instruction set ("API of the CPU")

= Often fluid transitions and overlaps (architecture, manufacturer, platform)

* Inconsistencies even in Intel Manual (grown historically) 15745

2.3 The many modes of an x86 CPU

16 /45

2.3 The many modes of an x86 CPU

» 16-bit ("real mode")

16 /45

2.3 The many modes of an x86 CPU

» 16-bit ("real mode")
= 32-bit protected mode, without paging

16 /45

2.3 The many modes of an x86 CPU

» 16-bit ("real mode")
= 32-bit protected mode, without paging
= 32-bit protected mode, with paging

16 /45

2.3 The many modes of an x86 CPU

» 16-bit ("real mode")

= 32-bit protected mode, without paging

= 32-bit protected mode, with paging

= 64-bit with 32-bit opcodes ("compatibility IA-32e mode")

- Allows 32-bit software in an 64-bit operating system

16 /45

2.3 The many modes of an x86 CPU

» 16-bit ("real mode")

= 32-bit protected mode, without paging

= 32-bit protected mode, with paging

= 64-bit with 32-bit opcodes ("compatibility IA-32e mode")
- Allows 32-bit software in an 64-bit operating system

= 64-bit mode ("64-bit IA-32e mode" | e, "long mode" amp)

16 /45

2.4 Overview of an x86 Computer

17745

2.4 Overview of an x86 Computer

= Platform/SoC: Processor + Chipset

17745

2.4 Overview of an x86 Computer

= Platform/SoC: Processor + Chipset

= Mainboard: Processor + Chipset + additional stuff (ports, power units)

17745

2.4 Overview of an x86 Computer

= Platform/SoC: Processor + Chipset
= Mainboard: Processor + Chipset + additional stuff (ports, power units)

= Chipset

17745

2.4 Overview of an x86 Computer

= Platform/SoC: Processor + Chipset
= Mainboard: Processor + Chipset + additional stuff (ports, power units)
= Chipset

= Necessary logical functionality for CPU to work

17745

2.4 Overview of an x86 Computer

= Platform/SoC: Processor + Chipset
= Mainboard: Processor + Chipset + additional stuff (ports, power units)
= Chipset

= Necessary logical functionality for CPU to work

= Built into your mainboard

17745

2.4 Overview of an x86 Computer

= Platform/SoC: Processor + Chipset
= Mainboard: Processor + Chipset + additional stuff (ports, power units)
= Chipset

= Necessary logical functionality for CPU to work

= Built into your mainboard
= Managing data flow between processor and memory & peripherals

17745

2.4 Overview of an x86 Computer

= Platform/SoC: Processor + Chipset
= Mainboard: Processor + Chipset + additional stuff (ports, power units)
= Chipset

= Necessary logical functionality for CPU to work

= Built into your mainboard
= Managing data flow between processor and memory & peripherals

m P(Cle

17745

2.4 Overview of an x86 Computer

= Platform/SoC: Processor + Chipset
= Mainboard: Processor + Chipset + additional stuff (ports, power units)
= Chipset

= Necessary logical functionality for CPU to work

= Built into your mainboard
= Managing data flow between processor and memory & peripherals

m P(Cle

= Main interface/bus to orchestrate hardware and connect with chipset

17745

2.4 Overview of an x86 Computer

= Platform/SoC: Processor + Chipset
= Mainboard: Processor + Chipset + additional stuff (ports, power units)
= Chipset
= Necessary logical functionality for CPU to work
= Built into your mainboard
= Managing data flow between processor and memory & peripherals
= PCle
= Main interface/bus to orchestrate hardware and connect with chipset

= Controller typically integrated into processor

17745

2.4 Overview of an x86 Computer

= Platform/SoC: Processor + Chipset
= Mainboard: Processor + Chipset + additional stuff (ports, power units)
= Chipset
= Necessary logical functionality for CPU to work
= Built into your mainboard
= Managing data flow between processor and memory & peripherals
= PCle
= Main interface/bus to orchestrate hardware and connect with chipset
= Controller typically integrated into processor

= Chipset has PCle lanes
17745

2.4 Processor, Chipset, Hardware

18745

2.4 Processor, Chipset, Hardware

» Platform Controller Hub (PCH)

18745

2.4 Processor, Chipset, Hardware

» Platform Controller Hub (PCH)

= Intel's name for a chipset family

18745

2.4 Processor, Chipset, Hardware

» Platform Controller Hub (PCH)
= Intel's name for a chipset family
= Before 2009: "Northbridge" + "Southbridge"

18745

2.4 Processor, Chipset, Hardware

» Platform Controller Hub (PCH)
= Intel's name for a chipset family
= Before 2009: "Northbridge" + "Southbridge"

= Connects socket (processor) with memory, PCl lanes, power, ...

18745

2.4 Processor, Chipset, Hardware

Platform Controller Hub (PCH)

Intel's name for a chipset family
Before 2009: "Northbridge" + "Southbridge"
Connects socket (processor) with memory, PCl lanes, power, ...

Example: USB controller and NVME controller appear as PCle device

18745

2.4 Processor, Chipset, Hardware

» Platform Controller Hub (PCH)
= Intel's name for a chipset family
= Before 2009: "Northbridge" + "Southbridge"
= Connects socket (processor) with memory, PCl lanes, power, ...
= Example: USB controller and NVME controller appear as PCle device
= Trivia: Mainboard manufacturer buys chipset IC(s) from Intel (e.g. Z390) and
wires PCl lanes, memory bus, device slots. etc. as needed by the

corresponding PCH spec + additional custom things

IC: Integrated Circuit 18 /45

2.5 Accessing Hardware

19745

2.5 Accessing Hardware

Memory-Mapped 1/0 (MMIO)

19745

2.5 Accessing Hardware

Memory-Mapped 1/0 (MMIO)

= Physical memory addresses map to

19745

2.5 Accessing Hardware

Memory-Mapped 1/0 (MMIO)

= Physical memory addresses map to
= RAM cells

19745

2.5 Accessing Hardware

Memory-Mapped 1/0 (MMIO)

= Physical memory addresses map to
= RAM cells

= Device registers

19745

2.5 Accessing Hardware

Memory-Mapped 1/0 (MMIO)

= Physical memory addresses map to
= RAM cells
= Device registers
= GPIO pin, ...

19745

2.5 Accessing Hardware

Memory-Mapped 1/0 (MMIO)

= Physical memory addresses map to
= RAM cells
= Device registers
= GPIO pin, ...

= mov src, dst instructions

19745

2.5 Accessing Hardware

Memory-Mapped I/0 (Mmmio) Port I/0 (PIO)

= Physical memory addresses map to
= RAM cells
= Device registers
= GPIO pin, ...

= mov src, dst instructions

19745

2.5 Accessing Hardware

Memory-Mapped I/0 (Mmmio) Port I/0 (PIO)
= Physical memory addresses map to = X86 has a Port I/0 address space

= RAM cells
= Device registers
= GPIO pin, ...

= mov src, dst instructions

19745

2.5 Accessing Hardware

Memory-Mapped I/0 (Mmmio) Port I/0 (PIO)

= Physical memory addresses mapto = X86 has a Port I/0 address space
= RAM cells = “Write byte A to Port B”

= Device registers
= GPIO pin, ...

= mov src, dst instructions

19745

2.5 Accessing Hardware

Memory-Mapped I/0 (Mmmio) Port I/0 (PIO)

= Physical memory addresses mapto = X86 has a Port I/0 address space

= RAM cells = “Write byte A to Port B”
= Device registers = Port may map to a device register
= GPIO pin, ...

= mov src, dst instructions

19745

2.5 Accessing Hardware

Memory-Mapped I/0 (Mmmio) Port I/0 (PIO)

Physical memory addresses map to

RAM cells
Device registers
GPIO pin, ...

mov Ssrc,

dst instructions

X86 has a Port I/0 address space
“Write byte A to Port B”
Port may map to a device register

in/out instructions

19745

That was a lot &7 hardware is complex

20745

That was a lot &7 hardware is complex

Understanding the interfaces is key

20745

That was a lot &7 hardware is complex

Understanding the interfaces is key

20745

2.6 Firmware

21/45

2.6 Firmware

= You need software to load software

21/45

2.6 Firmware

= You need software to load software

= Software that is not installable in the classic way

21/45

2.6 Firmware

= You need software to load software
= Software that is not installable in the classic way

= On-board in a simple chip with simple interface (just raw bytes)

21/45

2.6 Firmware

= You need software to load software
= Software that is not installable in the classic way
= On-board in a simple chip with simple interface (just raw bytes)

= Technically "just normal" software

21/45

2.6 Firmware

= You need software to load software

= Software that is not installable in the classic way

= On-board in a simple chip with simple interface (just raw bytes)
= Technically "just normal" software

= Examples:

21/45

2.6 FiIrmware

= You need software to load software

= Software that is not installable in the classic way

= On-board in a simple chip with simple interface (just raw bytes)
= Technically "just normal" software

= Examples:
= [Interfaces: Legacy BIOS ("IBM PC"), UEFI

21/45

2.6 FiIrmware

= You need software to load software

= Software that is not installable in the classic way

= On-board in a simple chip with simple interface (just raw bytes)
= Technically "just normal" software

= Examples:
= [Interfaces: Legacy BIOS ("IBM PC"), UEFI
= Implementation: SeaBIOS, Coreboot, EDK2

21/45

2.6 FiIrmware

= You need software to load software
= Software that is not installable in the classic way
= On-board in a simple chip with simple interface (just raw bytes)
= Technically "just normal" software
= Examples:
= [Interfaces: Legacy BIOS ("IBM PC"), UEFI
= Implementation: SeaBIOS, Coreboot, EDK2

= From CPU perspective: doesn't know firmware variant

21/45

2.6 Firmware

22 /45

2.6 Firmware

= Bootstraps the platform ("Platform initialization")

22 /45

2.6 Firmware

= Bootstraps the platform ("Platform initialization")

= Brings platform and CPU into defined state

22 /45

2.6 Firmware

= Bootstraps the platform ("Platform initialization")
= Brings platform and CPU into defined state

= Determines interface for bootloader

22 /45

2.6 Firmware

= Bootstraps the platform ("Platform initialization")
= Brings platform and CPU into defined state
» Determines interface for bootloader

s Executable format

22 /45

2.6 Firmware

= Bootstraps the platform ("Platform initialization")
= Brings platform and CPU into defined state
= Determines interface for bootloader

= Executable format

= Environment

22 /45

2.6 Trivia: Intel SDM: Initialization

2.6 Trivia: Intel SDM: Initialization

= Keyword: "Hardware Reset"

2.6 Trivia: Intel SDM: Initialization

= Keyword: "Hardware Reset"

= 10. Processor Management and Initialization

2.6 Trivia: Intel SDM: Initialization

= Keyword: "Hardware Reset"
= 10. Processor Management and Initialization
= 10.1 INITIALIZATION OVERVIEW
= 10.1.4 First Instruction Executed

-> Hardware software co-design

2.7 UEF

Towards a unified firmware.

24 /45

2.7 UEF

Towards a unified firmware.

This Unified Extensible Firmware Interface (UEFI) Specification describes an interface
between the operating system (0S) and the platform firmware.

24 /45

2.7 UEF

Towards a unified firmware.

This Unified Extensible Firmware Interface (UEFI) Specification describes an interface
between the operating system (0S) and the platform firmware.

[..]

The interface is in the form of data tables that contain platform-related information,
and boot and runtime service calls that are available to the OS loader and the OS.
Together, these provide a standard environment for booting an OS.

24 /45

2.7 UEFI

25745

2.7 UEFI

= Unified Extensible Firmware Interface

25745

2.7 UEFI

= Unified Extensible Firmware Interface

= Developed by Tianocore community

25745

2.7 UEFI

= Unified Extensible Firmware Interface
= Developed by Tianocore community
u IIEDKZII

25745

2.7 UEFI

= Unified Extensible Firmware Interface
= Developed by Tianocore community
u IIEDKZII

= Build system

25745

2.7 UEFI

= Unified Extensible Firmware Interface
= Developed by Tianocore community
= "EDK2"

= Build system

» Reference implementation written in C, C++, and Assembly

25745

2.7 UEFI

= Unified Extensible Firmware Interface
= Developed by Tianocore community
= "EDK2"
= Build system
= Reference implementation written in C, C++, and Assembly

= Open source on GitHub

25745

2.7 UEFI

= Unified Extensible Firmware Interface

= Developed by Tianocore community

= "EDK2"
= Build system
= Reference implementation written in C, C++, and Assembly
= Open source on GitHub

= Other implementations exists

25745

2.7 UEFI

26 /45

2.7 UEFI

= Gives us a defined machine state

26 /45

2.7 UEFI

= Gives us a defined machine state

= 64-bit mode, yay!

26 /45

2.7 UEFI

= Gives us a defined machine state
= 64-bit mode, yay!

= Only one CPU ("Bootstrap Processor" (BSP))

26 /45

2.7 UEFI

= Gives us a defined machine state
= 64-bit mode, yay!
= Only one CPU ("Bootstrap Processor" (BSP))

= Others are ready to be woken up ("Application Processors" (APs))

26 /45

2.7 UEFI

= Gives us a defined machine state

= 64-bit mode, yay!

= Only one CPU ("Bootstrap Processor" (BSP))

= Others are ready to be woken up ("Application Processors" (APs))

= (Can load EFl images (binaries, executables)

26 /45

2.7 UEFI

= Gives us a defined machine state

= 64-bit mode, yay!

= Only one CPU ("Bootstrap Processor" (BSP))

= Others are ready to be woken up ("Application Processors" (APs))

= (Can load EFl images (binaries, executables)

= Similar to starting an .exe on Windows

26 /45

2.7 UEFI

= Gives us a defined machine state

= 64-bit mode, yay!

= Only one CPU ("Bootstrap Processor" (BSP))

= Others are ready to be woken up ("Application Processors" (APs))
= (Can load EFl images (binaries, executables)

= Similar to starting an .exe on Windows

= Stack is provided

26 /45

2.7 UEFI

= Gives us a defined machine state
= 64-bit mode, yay!
= Only one CPU ("Bootstrap Processor" (BSP))
= Others are ready to be woken up ("Application Processors" (APs))
= (Can load EFl images (binaries, executables)
= Similar to starting an .exe on Windows
= Stack is provided

= UEFI functionality is callable from EFl image

26 /45

2.7 UEFI

27 /45

2.7 UEFI

= Fixed set of functionality ("services") + variable part ("protocols")

27 /45

2.7 UEFI

= Fixed set of functionality ("services") + variable part ("protocols")

m Services are callable functions

27 /45

2.7 UEFI

= Fixed set of functionality ("services") + variable part ("protocols")
» Services are callable functions

= Protocols are somewhat like interfaces in Java or traits in Rust

27 /45

2.7 UEFI

= Fixed set of functionality ("services") + variable part ("protocols")

= Services are callable functions
= Protocols are somewhat like interfaces in Java or traits in Rust

= Two phases

27 /45

2.7 UEFI

= Fixed set of functionality ("services") + variable part ("protocols")

= Services are callable functions
= Protocols are somewhat like interfaces in Java or traits in Rust

= Two phases

= Boot-Services

27 /45

2.7 UEFI

= Fixed set of functionality ("services") + variable part ("protocols")
» Services are callable functions

= Protocols are somewhat like interfaces in Java or traits in Rust

= Two phases

= Boot-Services
= UEFI has full control over hardware (like an OS)

27 /45

2.7 UEFI

= Fixed set of functionality ("services") + variable part ("protocols")
= Services are callable functions
= Protocols are somewhat like interfaces in Java or traits in Rust
= Two phases

= Boot-Services
= UEFI has full control over hardware (like an OS)

= Provide feature-rich and high(er)-level interface to hardware

27 /45

2.7 UEFI

= Fixed set of functionality ("services") + variable part ("protocols")
= Services are callable functions
= Protocols are somewhat like interfaces in Java or traits in Rust
= Two phases

= Boot-Services
= UEFI has full control over hardware (like an OS)

= Provide feature-rich and high(er)-level interface to hardware

= Must be exited before OS can take over control

27 /45

2.7 UEFI

= Fixed set of functionality ("services") + variable part ("protocols")
= Services are callable functions
= Protocols are somewhat like interfaces in Java or traits in Rust
= Two phases

= Boot-Services
= UEFI has full control over hardware (like an OS)

= Provide feature-rich and high(er)-level interface to hardware
= Must be exited before OS can take over control

» Runtime-Services

27 /45

2.7 UEFI

= Fixed set of functionality ("services") + variable part ("protocols")
= Services are callable functions
= Protocols are somewhat like interfaces in Java or traits in Rust
= Two phases

= Boot-Services
= UEFI has full control over hardware (like an OS)

= Provide feature-rich and high(er)-level interface to hardware
= Must be exited before OS can take over control

» Runtime-Services

= Tiny fraction of remaining functionality: System time, UEFI variables
27145

2.7 UEFI

28 /45

2.7 UEFI

= |dentifies resources and abstracts device access with EFI_HANDLE s

28 /45

2.7 UEFI

= |dentifies resources and abstracts device access with EFI_HANDLE s

= Handles know their associated protocols

28 /45

2.7 UEFI

= |dentifies resources and abstracts device access with EFI_HANDLE s

= Handles know their associated protocols

= Technically, a protocol is a ¢ struct holding functions and/or data,

with an associated GUID

28 /45

2.7 UEFI

= |dentifies resources and abstracts device access with EFI_HANDLE s

= Handles know their associated protocols

= Technically, a protocol is a ¢ struct holding functions and/or data,
with an associated GUID

typedef struct _EFI_SIMPLE_FILE_SYSTEM_PROTOCOL

EFI_SIMPLE_FILE_SYSTEM_PROTOCOL

28 /45

2.7 UEFI

= |dentifies resources and abstracts device access with EFI_HANDLE s

= Handles know their associated protocols

= Technically, a protocol is a ¢ struct holding functions and/or data,

with an associated GUID

UINT64 Revision

28 /45

2.7 UEFI

= |dentifies resources and abstracts device access with EFI_HANDLE s

= Handles know their associated protocols

= Technically, a protocol is a ¢ struct holding functions and/or data,

with an associated GUID

EFI_SIMPLE_FILE_SYSTEM_PROTOCOL_OPEN_VOLUME OpenVolume

28 /45

2.7 UEFI

= |dentifies resources and abstracts device access with EFI_HANDLE s

= Handles know their associated protocols

= Technically, a protocol is a ¢ struct holding functions and/or data,
with an associated GUID

typedef struct _EFI_SIMPLE_FILE_SYSTEM_PROTOCOL
UINT64 Revision

EFI_SIMPLE_FILE_SYSTEM_PROTOCOL_OPEN_VOLUME OpenVolume
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL

28 /45

2.7 UEFI

29745

2.7 UEFI

= Boot service examples

29745

2.7 UEFI

= Boot service examples

= OpenProtocol() : Tries opening a protocol on a given handle

29745

2.7 UEFI

= Boot service examples
= OpenProtocol() : Tries opening a protocol on a given handle

= LocateHandle() : Finds handles supporting a given protocol

29745

2.7 UEFI

= Boot service examples
= OpenProtocol() : Tries opening a protocol on a given handle

= LocateHandle() : Finds handles supporting a given protocol

= Protocol examples

29745

2.7 UEFI

= Boot service examples

= OpenProtocol() : Tries opening a protocol on a given handle

= LocateHandle() : Finds handles supporting a given protocol

= Protocol examples
= EFI_GRAPHICS_OUTPUT_PROTOCOL :

Draw to framebuffer

29745

2.7 UEFI

= Boot service examples

= OpenProtocol() : Tries opening a protocol on a given handle

= LocateHandle() : Finds handles supporting a given protocol

= Protocol examples

" EFI_GRAPHICS_OUTPUT_PROTOCOL :

Draw to framebuffer

"= EFI_SIMPLE_FILE_SYSTEM_PROTOCOL :

Access files

29745

2.7 UEFI: Extensible?

By 3rd Party Hardware

30/45

2.7 UEFI: Extensible?

By 3rd Party Hardware

= PCle devices can advertise additional UEFI drivers ("Option ROM")

30/45

2.7 UEFI: Extensible?

By 3rd Party Hardware

= PCle devices can advertise additional UEFI drivers ("Option ROM")

= Examples

30/45

2.7 UEFI: Extensible?

By 3rd Party Hardware

= PCle devices can advertise additional UEFI drivers ("Option ROM")
= Examples

= An NVIDIA GPU may install the EFI_GRAPHICS_OUTPUT_PROTOCOL on its

corresponding handle

30/45

2.7 UEFI: Extensible?

By 3rd Party Hardware

= PCle devices can advertise additional UEFI drivers ("Option ROM")
= Examples
= An NVIDIA GPU may install the EFI_GRAPHICS_OUTPUT_PROTOCOL on its
corresponding handle
= A network card may install the EFI_PXE_BASE_CODE_PROTOCOL on its

corresponding handle

30/45

2.7 UEFI: Extensible?

By 3rd Party Hardware

= PCle devices can advertise additional UEFI drivers ("Option ROM")
= Examples
= An NVIDIA GPU may install the EFI_GRAPHICS_OUTPUT_PROTOCOL on its
corresponding handle
= A network card may install the EFI_PXE_BASE_CODE_PROTOCOL on its
corresponding handle

= UEFI firmware may also have built-in drivers for common hardware

30/45

2.7 UEFI: Extensible?

By 3rd Party Hardware

PCle devices can advertise additional UEFI drivers ("Option ROM")

Examples

= An NVIDIA GPU may install the EFI_GRAPHICS_OUTPUT_PROTOCOL on its
corresponding handle

= A network card may install the EFI_PXE_BASE_CODE_PROTOCOL on its

corresponding handle

UEFI firmware may also have built-in drivers for common hardware

We as software developers can use them

30/45

2.7 UEFI: Extensible?

By software developers

31745

2.7 UEFI: Extensible?

By software developers

= |n our OS loader, we can install protocols or use protocols on any handle

31745

2.7 UEFI: Extensible?

By software developers

= |n our OS loader, we can install protocols or use protocols on any handle

= We may chainload another bootloader (systemd boot, Windows bootloader)

31745

2.7 UEFI: Extensible?

By software developers

= |n our OS loader, we can install protocols or use protocols on any handle
= We may chainload another bootloader (systemd boot, Windows bootloader)

= Alot of options!

31745

2.8 Utilizing UEF

2.8 Utilizing UEF

= Writing your own (portable) OS-loader is easy

2.8 Utilizing UEF

= Writing your own (portable) OS-loader is easy

= Defined executable file format &7 (somewhat similarto .exe)

2.8 Utilizing UEF

= Writing your own (portable) OS-loader is easy
= Defined executable file format &7 (somewhat similarto .exe)

= Subset of PE32+ file format (Windows' .exe format)

2.8 Utilizing UEF

= Writing your own (portable) OS-loader is easy
= Defined executable file format &7 (somewhat similarto .exe)
= Subset of PE32+ file format (Windows' .exe format)

= By default, loaded from <drive>\EFI\BOOT\BOOTX64.EFI (FAT partition)

2.8 Utilizing UEF

= Writing your own (portable) OS-loader is easy
= Defined executable file format &7 (somewhat similarto .exe)
= Subset of PE32+ file format (Windows' .exe format)
= By default, loaded from <drive>\EFI\BOOT\BOOTX64.EFI (FAT partition)

= We can use extended functionality with UEFI protocols

2.8 Utilizing UEF

= Writing your own (portable) OS-loader is easy
= Defined executable file format &7 (somewhat similarto .exe)
= Subset of PE32+ file format (Windows' .exe format)
= By default, loaded from <drive>\EFI\BOOT\BOOTX64.EFI (FAT partition)

= We can use extended functionality with UEFI protocols
" EFI GRAPHICS OUTPUT_PROTOCOL : No extra GPU driver needed

2.8 Utilizing UEF

= Writing your own (portable) OS-loader is easy
= Defined executable file format &7 (somewhat similarto .exe)
= Subset of PE32+ file format (Windows' .exe format)
= By default, loaded from <drive>\EFI\BOOT\BOOTX64.EFI (FAT partition)

= We can use extended functionality with UEFI protocols
" EFI GRAPHICS OUTPUT_PROTOCOL : No extra GPU driver needed

" EFI_PXE_BASE_CODE_PROTOCOL : No extra TCP + PXE driver needed

2.8 Utilizing UEF

= Writing your own (portable) OS-loader is easy
= Defined executable file format &7 (somewhat similarto .exe)
= Subset of PE32+ file format (Windows' .exe format)
= By default, loaded from <drive>\EFI\BOOT\BOOTX64.EFI (FAT partition)

= We can use extended functionality with UEFI protocols
" EFI GRAPHICS OUTPUT_PROTOCOL : No extra GPU driver needed

" EFI_PXE_BASE_CODE_PROTOCOL : No extra TCP + PXE driver needed

" EFI_SIMPLE_FILE_SYSTEM_PROTOCOL : No extra NVMe or FAT driver needed

2.8 Utilizing UEF

= Writing your own (portable) OS-loader is easy
= Defined executable file format &7 (somewhat similarto .exe)
= Subset of PE32+ file format (Windows' .exe format)
= By default, loaded from <drive>\EFI\BOOT\BOOTX64.EFI (FAT partition)

= We can use extended functionality with UEFI protocols
" EFI GRAPHICS OUTPUT_PROTOCOL : No extra GPU driver needed

" EFI_PXE_BASE_CODE_PROTOCOL : No extra TCP + PXE driver needed
" EFI_SIMPLE_FILE_SYSTEM_PROTOCOL : No extra NVMe or FAT driver needed

= OS-loader typically exits boot services

2.8 Utilizing UEF

= Writing your own (portable) OS-loader is easy
= Defined executable file format &7 (somewhat similarto .exe)
= Subset of PE32+ file format (Windows' .exe format)
= By default, loaded from <drive>\EFI\BOOT\BOOTX64.EFI (FAT partition)

= We can use extended functionality with UEFI protocols
" EFI GRAPHICS OUTPUT_PROTOCOL : No extra GPU driver needed

" EFI_PXE_BASE_CODE_PROTOCOL : No extra TCP + PXE driver needed
" EFI_SIMPLE_FILE_SYSTEM_PROTOCOL : No extra NVMe or FAT driver needed

= OS-loader typically exits boot services

m Kernel has its own drivers (PCle, NVMe)

2.8 Utilizing UEFI: In a Nutshell

From Developer Perspective

2.8 Utilizing UEFI: In a Nutshell

From Developer Perspective

= We have an OS-like environment

2.8 Utilizing UEFI: In a Nutshell

From Developer Perspective

= We have an OS-like environment

= Higher-level abstractions to

2.8 Utilizing UEFI: In a Nutshell

From Developer Perspective

= We have an OS-like environment
= Higher-level abstractions to

= | oad files

2.8 Utilizing UEFI: In a Nutshell

From Developer Perspective

= We have an OS-like environment
= Higher-level abstractions to
= |oad files

m Access network

2.8 Utilizing UEFI: In a Nutshell

From Developer Perspective

= We have an OS-like environment
= Higher-level abstractions to

= Load files

= Access network

= Draw to the screen

2.8 Utilizing UEFI: In a Nutshell

From Developer Perspective

= We have an OS-like environment
= Higher-level abstractions to

= Load files

= Access network

= Draw to the screen

= Get user input

2.8 Utilizing UEFI: In a Nutshell

From Developer Perspective

= We have an OS-like environment
= Higher-level abstractions to

= Load files

= Access network

= Draw to the screen

= Get user input

= No need to fiddle with own PCle, network drivers, or GPU drivers

2.8 Utilizing UEFI: In a Nutshell

From Developer Perspective

We have an OS-like environment

Higher-level abstractions to

= Load files

= Access network

= Draw to the screen

= Get user input

No need to fiddle with own PCle, network drivers, or GPU drivers

Makes loading your kernel just easy

2.9 Summary

34 /45

2.9 Summary

= Hardware is complex

34 /45

2.9 Summary

= Hardware is complex

= UEFI is de-facto standard firmware interface making things easier

34 /45

2.9 Summary

= Hardware is complex
= UEFI is de-facto standard firmware interface making things easier

» Hardware manufacturers

34 /45

2.9 Summary

= Hardware is complex
= UEFI is de-facto standard firmware interface making things easier

» Hardware manufacturers

= Firmware developers

34 /45

2.9 Summary

= Hardware is complex

= UEFI is de-facto standard firmware interface making things easier
» Hardware manufacturers
= Firmware developers

= Software developers

34 /45

2.9 Summary

= Hardware is complex

= UEFI is de-facto standard firmware interface making things easier
» Hardware manufacturers
= Firmware developers

= Software developers
= EDK?2 is default UEFI implementation

34 /45

2.9 Summary

= Hardware is complex

= UEFI is de-facto standard firmware interface making things easier
» Hardware manufacturers
= Firmware developers
= Software developers

= EDK?2 is default UEFI implementation

= UEFI provides higher level abstractions to access e.g. files

34 /45

2.9 Summary

= Hardware is complex

= UEFI is de-facto standard firmware interface making things easier
» Hardware manufacturers
= Firmware developers
= Software developers

= EDK?2 is default UEFI implementation

= UEFI provides higher level abstractions to access e.g. files

= OS-loaders / bootloaders are EFl applications

34 /45

3. uefi-rs

Mastering UEFI with Rust

35745

3. uefi-rs

Mastering UEFI with Rust

= github.com/rust-osdev/uefi-rs (uefi library on crates.io)

35745

https://github.com/rust-osdev/uefi-rs

3. uefi-rs

Mastering UEFI with Rust

= github.com/rust-osdev/uefi-rs (uefi library on crates.io)

= Makes it easy to develop Rust software that leverages safe, convenient, and

performant abstractions for UEFI functionality.

35745

https://github.com/rust-osdev/uefi-rs

3. uefi-rs

Mastering UEFI with Rust

= github.com/rust-osdev/uefi-rs (uefi library on crates.io)

= Makes it easy to develop Rust software that leverages safe, convenient, and

performant abstractions for UEFI functionality.

= High-level wrappers for interfacing UEFI (not an UEFI implementation!)

35745

https://github.com/rust-osdev/uefi-rs

3. uefi-rs

Mastering UEFI with Rust

github.com/rust-osdev/uefi-rs (uefi library on crates.io)

Makes it easy to develop Rust software that leverages safe, convenient, and

performant abstractions for UEFI functionality.
High-level wrappers for interfacing UEFI (not an UEFI implementation!)

Maintaining since August 2022 together with Nicholas Bishop (Google)

35745

https://github.com/rust-osdev/uefi-rs

3. uefi-rs

Mastering UEFI with Rust

github.com/rust-osdev/uefi-rs (uefi library on crates.io)

Makes it easy to develop Rust software that leverages safe, convenient, and
performant abstractions for UEFI functionality.

High-level wrappers for interfacing UEFI (not an UEFI implementation!)
Maintaining since August 2022 together with Nicholas Bishop (Google)

So far, I've touched every part of the code

35745

https://github.com/rust-osdev/uefi-rs

3. uefi-rs

Mastering UEFI with Rust

github.com/rust-osdev/uefi-rs (uefi library on crates.io)

Makes it easy to develop Rust software that leverages safe, convenient, and
performant abstractions for UEFI functionality.

High-level wrappers for interfacing UEFI (not an UEFI implementation!)
Maintaining since August 2022 together with Nicholas Bishop (Google)
So far, I've touched every part of the code

Code powers ChromeQS Flex notebooks and also runs in Amazon AWS

35745

https://github.com/rust-osdev/uefi-rs

3. uefi-rs

36/45

3. uefi-rs

= rustc can compile EFl applications - compiler target x86_64-unknown-uefi

36/45

3. uefi-rs

= rustc can compile EFl applications - compiler target x86_64-unknown-uefi

= Library helps writing EFl applications

36 /45

3. uefi-rs

= rustc can compile EFl applications - compiler target x86_64-unknown-uefi

= Library helps writing EFl applications

= Helps loading a kernel

36 /45

3. uefi-rs

= rustc can compile EFl applications - compiler target x86_64-unknown-uefi

= Library helps writing EFl applications
= Helps loading a kernel

= Selected highlights

36 /45

3. uefi-rs

= rustc can compile EFl applications - compiler target x86_64-unknown-uefi

= Library helps writing EFl applications
= Helps loading a kernel
= Selected highlights

= File system abstraction (proudly crafted by me &)

36 /45

3. uefi-rs

= rustc can compile EFl applications - compiler target x86_64-unknown-uefi
= Library helps writing EFl applications
= Helps loading a kernel
= Selected highlights
= File system abstraction (proudly crafted by me &)

= Handling device paths with ease

The device path protocol, also called a device path, is a flexible and structured sequence of binary nodes
that describes a route from the UEFI root to a particular device, controller, or file. 36 /45

3. uefi-rs

= rustc can compile EFl applications - compiler target x86_64-unknown-uefi

= Library helps writing EFl applications

= Helps loading a kernel

= Selected highlights
= File system abstraction (proudly crafted by me &)
= Handling device paths with ease

» [ntegration of UEFI's allocator into Rust's global allocator

The device path protocol, also called a device path, is a flexible and structured sequence of binary nodes
that describes a route from the UEFI root to a particular device, controller, or file. 36 /45

3. uefi-rs: Code Example: Hello World

Creating a no_std binary (executable)

371745

3. uefi-rs: Code Example: Hello World

Creating a no_std binary (executable)

#!1[no_main]

371745

3. uefi-rs: Code Example: Hello World

Creating a no_std binary (executable)

#![no_std]

371745

3. uefi-rs: Code Example: Hello World

Creating a no_std binary (executable)

371745

3. uefi-rs: Code Example: Hello World

Creating a no_std binary (executable)

use uefi::prelude::*;

371745

3. uefi-rs: Code Example: Hello World

Creating a no_std binary (executable)

#[entry]

371745

3. uefi-rs: Code Example: Hello World

Creating a no_std binary (executable)

fn main() -> Status {
Status: :SUCCESS

}

371745

3. uefi-rs: Code Example: Hello World

Creating a no_std binary (executable)

#[entry]

371745

3. uefi-rs: Code Example: Hello World

Creating a no_std binary (executable)

#[unsafe(export_name = "efi _main')]
extern "efiapi" fn main(
internal_image_handle: ::uefi::Handle,

internal_system_table: *const ::core::ffi::c_void,
) -> uefi::Status {
unsafe {
::uefi::boot::set_image_handle(internal_image_handle);
r:uefi::table::set_system_table(internal_system_table.cast());

b
Status: : SUCCESS

371745

3. uefi-rs: Code Example: Hello World

Creating a no_std binary (executable)

#[unsafe(export_name = "efi _main')]

371745

3. uefi-rs: Code Example: Hello World

Creating a no_std binary (executable)

extern "efiapi" fn main(

) -> uefi::Status {

371745

3. uefi-rs: Code Example: Hello World

Creating a no_std binary (executable)

internal_image_handle: ::uefi::Handle,
internal_system_table: *const ::core::ffi::c_void,

371745

3. uefi-rs: Code Example: Hello World

Creating a no_std binary (executable)

unsafe {
::uefi::boot::set_image_handle(internal_image_handle);
r:uefi::table::set_system_table(internal_system_table.cast());

371745

3. uefi-rs: Code Example: Hello World

Creating a no_std binary (executable)

#[entry]

371745

3. uefi-rs: Code Example: Hello World

Creating a no_std binary (executable)

fn main() -> Status {
uefi::helpers::init().unwrap();
info!("Hello world!");
Status: :SUCCESS

371745

3. uefi-rs: Code Example: Hello World

Creating a no_std binary (executable)

use core::time::Duration;

boot::stall(Duration::from_secs(10));

371745

3. uefi-rs: Code Example: Reading File

#lentry]
fn main() -> Status {
Status: :SUCCESS

3

38745

3. uefi-rs: Code Example: Reading File

helpers::init().unwrap();

38745

3. uefi-rs: Code Example: Reading File

let sfs_proto = boot::get_image_file_system(boot::image_handle()).unwrap();

38745

3. uefi-rs: Code Example: Reading File

let mut fs = FileSystem::new(sfs_proto);

38745

3. uefi-rs: Code Example: Reading File

for entry in fs.read_dir(cstri16! ("EFIN\BOOT")).unwrap() {
}

38745

3. uefi-rs: Code Example: Reading File

for entry in fs.read_dir(cstri6! ("EFIN\BOOT")).unwrap() {

38745

3. uefi-rs: Code Example: Reading File

let entry = entry.unwrap();

38745

3. uefi-rs: Code Example: Reading File

let kind = if entry.is_directory() { "dir" } else { "file" };

38745

3. uefi-rs: Code Example: Reading File

[INFO]:
[INFO]:
[INFO]:

info! (

src/main.
src/main.
src/main.

Found: {kind}

rs@165: Found:
rs@165: Found:
rs@165: Found:

{}", entry.file_name());

dir .
dir ..
file BOOTX64.EFI

38745

3. uefi-rs: Code Example: Device Paths

39/45

3. uefi-rs: Code Example: Device Paths

let handles = boot::find_handles: :<DevicePath>().unwrap();

39/45

3. uefi-rs: Code Example: Device Paths

for handle in handles.iter() {

}

39/45

3. uefi-rs: Code Example: Device Paths

let maybe_dvp = unsafe {

39/45

3. uefi-rs: Code Example: Device Paths

boot: :open_protocol: :<DevicePath>(
OpenProtocolParams { handle: *handle,

39/45

3. uefi-rs: Code Example: Device Paths

let Ok(dvp) = maybe_dvp else { continue };

39/45

3. uefi-rs: Code Example: Device Paths

let string = dvp.to_string(DisplayOnly(true), AllowShortcuts(false)).unwrap();

39/45

3. uefi-rs: Code Example: Device Paths

0 ~N o oA WN B

L T s T e T e T e O e B e B |

info!("Device path: {}",

INFO]:
INFO]:
INFO]:
INFO]:
INFO]:
INFO]:
INFO]:
INFO]:

src/main.

src/main

src/main.
src/main.
src/main.

src/main

src/main.
src/main.

rs@178:
.rs@178:
rs@178:
rs@178:
rs@178:
.rs@178:
rs@178:
rs@178:

string);

Device
Device
Device
Device
Device
Device
Device
Device

path:
path:
path:
path:
path:
path:
path:
path:

Fv(7CB8BDCY-F8EB-4F34-AAEA-3EE4AF6516A1) -~

MemoryMapped(0xB, OX1FEDCOQO, OX1FF5FFFF)
PciRoot (0x0)
VenHw(EBF8ED7C-0DD1-4787-84F1-F48D537DCACF)
VenHw (28A03FF4-12B3-4305-A417-BB1A4F94081E)
VenHw(2A46715F-3581-4A55-8E73-2B769AAA30C5)
VenHw (D9DCC5DF-4007-435E-9098-8970935504B2)

PciRoot (0x0)/Pci(0x0, 0x0) v

39/45

3. uefi-rs: How to Test? How to Run?

40 /45

3. uefi-rs: How to Test? How to Run?

= Onreal hardware, i.e., developer laptop

40 /45

3. uefi-rs: How to Test? How to Run?

= Onreal hardware, i.e., developer laptop
= |naVM

40 /45

3. uefi-rs: How to Test? How to Run?

= Onreal hardware, i.e., developer laptop
= |naVM
= e.g., QEMU or Cloud Hypervisor with OVMF firmware

40 /45

3. uefi-rs: How to Test? How to Run?

= Onreal hardware, i.e., developer laptop

= |naVM
= e.g., QEMU or Cloud Hypervisor with OVMF firmware

= QOVMF is an EDK2 build for Virtual Machines

40 /45

4. Code

-

GitHub: phip1611/uefi-systemd-chainloader

41745

https://github.com/phip1611/uefi-systemd-chainloader
https://github.com/phip1611/uefi-systemd-chainloader

5. Summary & Conclusion

42 /45

5. Summary

43 /45

5. Summary

= UEFI simplifies and unifies some things

43 /45

5. Summary

= UEFI simplifies and unifies some things

= The domain is complex, and so is UEFI

43 /45

5. Summary

= UEFI simplifies and unifies some things
= The domain is complex, and so is UEFI
= systemd boot, GRUB, the Windows bootloader - EFI applications

43 /45

5. Summary

= UEFI simplifies and unifies some things
= The domain is complex, and so is UEFI
= systemd boot, GRUB, the Windows bootloader - EFI applications

= To get started: uefi crate; example project; runin VM

43 /45

5. Summary

= UEFI simplifies and unifies some things
= The domain is complex, and so is UEFI
= systemd boot, GRUB, the Windows bootloader - EFI applications

= To get started: uefi crate; example project; runin VM

» github.com/rust-osdev/uefi-rs

43 /45

https://github.com/rust-osdev/uefi-rs

5. Summary

= UEFI simplifies and unifies some things
= The domain is complex, and so is UEFI
= systemd boot, GRUB, the Windows bootloader - EFI applications
= To get started: uefi crate; example project; runin VM
» github.com/rust-osdev/uefi-rs

® crates.io/crates/uefi

43 /45

https://github.com/rust-osdev/uefi-rs
https://crates.io/crates/uefi

5. Summary

= UEFI simplifies and unifies some things
= The domain is complex, and so is UEFI
= systemd boot, GRUB, the Windows bootloader - EFI applications

= To get started: uefi crate; example project; runin VM

» github.com/rust-osdev/uefi-rs

® crates.io/crates/uefi

» docs.rs/uefi

43 /45

https://github.com/rust-osdev/uefi-rs
https://crates.io/crates/uefi
https://docs.rs/uefi

5. UEFI Criticism

44/ 45

5. UEFI Criticism

= Spec sometimes not specific enough

44/ 45

5. UEFI Criticism

= Spec sometimes not specific enough

= |mplementations are often buggy (derived from EDK2)

44/ 45

5. UEFI Criticism

= Spec sometimes not specific enough
= |mplementations are often buggy (derived from EDK2)

= Qverly complex and inconsistent

44/ 45

5. UEFI Criticism

= Spec sometimes not specific enough
= |mplementations are often buggy (derived from EDK2)
= Qverly complex and inconsistent

= Most vendors add closed-source additions

44/ 45

5. UEFI Criticism

= Spec sometimes not specific enough

= |mplementations are often buggy (derived from EDK2)
= Qverly complex and inconsistent

= Most vendors add closed-source additions

= Tries to be a modern OS-like environment but sticks to decade old concepts

44/ 45

5. UEFI Criticism

= Spec sometimes not specific enough

= |mplementations are often buggy (derived from EDK2)

= Qverly complex and inconsistent

= Most vendors add closed-source additions

= Tries to be a modern OS-like environment but sticks to decade old concepts

= Asingle global address space for everything

44/ 45

5. UEFI Criticism

= Spec sometimes not specific enough

= |mplementations are often buggy (derived from EDK2)

= Qverly complex and inconsistent

= Most vendors add closed-source additions

= Tries to be a modern OS-like environment but sticks to decade old concepts
= Asingle global address space for everything

= No real multitasking

44/ 45

5. UEFI Criticism

= Spec sometimes not specific enough

= |mplementations are often buggy (derived from EDK2)

= Qverly complex and inconsistent

= Most vendors add closed-source additions

= Tries to be a modern OS-like environment but sticks to decade old concepts
= Asingle global address space for everything
= No real multitasking

» Limited error handling and debugging

44/ 45

Thank you for your
attention!

