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1.0 Outlook

= UEFI is a firmware interface making things easier
» Hardware manufacturers
= Firmware developers
= Software developers

= uyefi-rs is aconvenientlibrary for UEFI in Rust

= Convenient high-level* abstractions for OS-loaders / bootloaders

*High-level from a low-level perspective. Not Python- or Java-like high-level. 3/45
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Working with Rust since 2019.

Hobby Projects Work Projects
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" multiboot2 " rust-vmm ecosystem
® (uefi
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1.3 My Relation to JUG Saxony e.V.

= Started studying computer science in October 2015
= Started student software engineer ("Werkstudent") position at Telekom MMS
(T-Systems Multimedia Solutions GmbH)
= JUG Saxony Day
= 2018
= 2022 (Speaker)
= 2025

= Personally met Falk Hartmann at EuroRust 2024 in Vienna

6/45
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= Founded 2017 by 6 founders in Dresden (today =30)

= |ndependent, profitable
= World-class expertise in x86 and virtualization

= Main products
= Cyberus Hypervisor (Cloud Hypervisor + Linux/KVM + Service & Expertise)

m  CTRL-OS (NixOS LTS + Embedded System Building Blocks)

7145
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1.4 About Cyberus Technology

= (Cloud department
= Public European cloud developed with SAP ("Apeiro")
Cyberus is responsible for virtualization layer

= Soon BSI*-accredited virtualization stack with open-source software

= Cloud Hypervisor/KVM will be accredited

* BSI: Bundesamt fur Sicherheit in der Informationstechnik 8 /45
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2021-05 - 2022-05: Student software engineer
Diplomarbeit (Master's Thesis)

2022-06 - present: Full time software engineer
Everything "low in the stack"

» Rust, C/C++, Assembly, ...

= libvirt, Linux kernel, GRUB, UEFI/edk?2...

Nix, NixOS, and nixpkgs

Conferences, Networking, Meetups

Organizing Dresden Systems Meetup

9/45
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1.4 My Role at Cyberus Technology

= Main contributor to Cloud Hypervisor
= Virtual Machine Monitor (VMM) utilizing Linux/KVM
= Akin to VirtualBox or QEMU
= Tailored to cloud usecase

= Virtualization requires understanding every concept of the platform and

typical software stack.

10745
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1.5 What (Not) To Expect

=  We have time (60 min) = no rush
= Qverview of how an x86 computer works
- Give you a good understanding of the x86 platform.
= What is Firmware?
=  UEFI: Context + Concepts

= Rust library ("crate") uefi-rs

= Code & Demo: Example UEFI OS-loader

* Same thing, different name: OS-loader, OS-specific loader, bootloader 11745
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1.6 Goal of an OS Project

Why does one need to understand the firmware?

= Fully bootstrapped system (Desktop environment, sound, ...)

= Kernel running in 64-bit mode
= Firmware (UEFI) eventually leads to our kernel being loaded

- We need to understand UEFI
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2.2 CPU Terminology (x86)

= CPU: Central Processing Unit, computing resource:
Everyday language: refers to whole package or computing resource

= Package/Socket/Processor*: The thing mounted onto the mainboard

= Core: Independent execution engine (L1, L2 caches)
= (Logical) CPU:
= Software-visible computing resource within a core
= Implements the instruction set ("API of the CPU")

= Often fluid transitions and overlaps (architecture, manufacturer, platform)

* Inconsistencies even in Intel Manual (grown historically) 15745
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»  16-bit ("real mode")

= 32-bit protected mode, without paging

= 32-bit protected mode, with paging

= 64-bit with 32-bit opcodes ("compatibility IA-32e mode")
- Allows 32-bit software in an 64-bit operating system

= 64-bit mode ("64-bit IA-32e mode" | e, "long mode" amp)

16 /45
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= Platform/SoC: Processor + Chipset
= Mainboard: Processor + Chipset + additional stuff (ports, power units)
= Chipset
= Necessary logical functionality for CPU to work
= Built into your mainboard
= Managing data flow between processor and memory & peripherals
= PCle
= Main interface/bus to orchestrate hardware and connect with chipset
= Controller typically integrated into processor

= Chipset has PCle lanes
17745
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2.4 Processor, Chipset, Hardware

»  Platform Controller Hub (PCH)
= Intel's name for a chipset family
= Before 2009: "Northbridge" + "Southbridge"
= Connects socket (processor) with memory, PCl lanes, power, ...
= Example: USB controller and NVME controller appear as PCle device
= Trivia: Mainboard manufacturer buys chipset IC(s) from Intel (e.g. Z390) and
wires PCl lanes, memory bus, device slots. etc. as needed by the

corresponding PCH spec + additional custom things

IC: Integrated Circuit 18 /45
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2.5 Accessing Hardware

Memory-Mapped I/0 (Mmmio) Port I/0 (PIO)

Physical memory addresses map to

RAM cells
Device registers
GPIO pin, ...

mov Ssrc,

dst instructions

X86 has a Port I/0 address space
“Write byte A to Port B”
Port may map to a device register

in/out instructions

19745
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= You need software to load software
= Software that is not installable in the classic way
= On-board in a simple chip with simple interface (just raw bytes)
= Technically "just normal" software
= Examples:
= [Interfaces: Legacy BIOS ("IBM PC"), UEFI
= Implementation: SeaBIOS, Coreboot, EDK2

= From CPU perspective: doesn't know firmware variant

21/45
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2.6 Firmware

= Bootstraps the platform ("Platform initialization")
= Brings platform and CPU into defined state
= Determines interface for bootloader

= Executable format

= Environment

22 /45
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2.6 Trivia: Intel SDM: Initialization

= Keyword: "Hardware Reset"
= 10. Processor Management and Initialization
= 10.1 INITIALIZATION OVERVIEW
= 10.1.4 First Instruction Executed

-> Hardware software co-design
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2.7 UEF

Towards a unified firmware.

This Unified Extensible Firmware Interface (UEFI) Specification describes an interface
between the operating system (0S) and the platform firmware.

[..]

The interface is in the form of data tables that contain platform-related information,
and boot and runtime service calls that are available to the OS loader and the OS.
Together, these provide a standard environment for booting an OS.
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= Unified Extensible Firmware Interface

= Developed by Tianocore community

= "EDK2"
= Build system
= Reference implementation written in C, C++, and Assembly
= Open source on GitHub

= Other implementations exists

25745
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= Gives us a defined machine state
= 64-bit mode, yay!
= Only one CPU ("Bootstrap Processor" (BSP))
= Others are ready to be woken up ("Application Processors" (APs))
= (Can load EFl images (binaries, executables)
= Similar to starting an .exe on Windows
= Stack is provided

= UEFI functionality is callable from EFl image

26 /45
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2.7 UEFI

= Fixed set of functionality ("services") + variable part ("protocols")
= Services are callable functions
= Protocols are somewhat like interfaces in Java or traits in Rust
= Two phases

= Boot-Services
= UEFI has full control over hardware (like an OS)

= Provide feature-rich and high(er)-level interface to hardware
= Must be exited before OS can take over control

»  Runtime-Services

= Tiny fraction of remaining functionality: System time, UEFI variables
27145
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= |dentifies resources and abstracts device access with EFI_HANDLE s

= Handles know their associated protocols

= Technically, a protocol is a ¢ struct holding functions and/or data,
with an associated GUID

typedef struct _EFI_SIMPLE_FILE_SYSTEM_PROTOCOL
UINT64 Revision

EFI_SIMPLE_FILE_SYSTEM_PROTOCOL_OPEN_VOLUME OpenVolume
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL
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2.7 UEFI

= Boot service examples

= OpenProtocol() : Tries opening a protocol on a given handle

= LocateHandle() : Finds handles supporting a given protocol

= Protocol examples

" EFI_GRAPHICS_OUTPUT_PROTOCOL :

Draw to framebuffer

"= EFI_SIMPLE_FILE_SYSTEM_PROTOCOL :

Access files
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2.7 UEFI: Extensible?

By 3rd Party Hardware

PCle devices can advertise additional UEFI drivers ("Option ROM")

Examples

=  An NVIDIA GPU may install the EFI_GRAPHICS_OUTPUT_PROTOCOL on its
corresponding handle

= A network card may install the EFI_PXE_BASE_CODE_PROTOCOL on its

corresponding handle

UEFI firmware may also have built-in drivers for common hardware

We as software developers can use them

30/45
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By software developers

= |n our OS loader, we can install protocols or use protocols on any handle
= We may chainload another bootloader (systemd boot, Windows bootloader)

= Alot of options!
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= Writing your own (portable) OS-loader is easy
= Defined executable file format &7 (somewhat similarto .exe )
= Subset of PE32+ file format (Windows' .exe format)
= By default, loaded from <drive>\EFI\BOOT\BOOTX64.EFI (FAT partition)

= We can use extended functionality with UEFI protocols
" EFI GRAPHICS OUTPUT_PROTOCOL : No extra GPU driver needed

"  EFI_PXE_BASE_CODE_PROTOCOL : No extra TCP + PXE driver needed
" EFI_SIMPLE_FILE_SYSTEM_PROTOCOL : No extra NVMe or FAT driver needed

=  OS-loader typically exits boot services

m  Kernel has its own drivers (PCle, NVMe)
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2.8 Utilizing UEFI: In a Nutshell

From Developer Perspective

We have an OS-like environment

Higher-level abstractions to

= Load files

= Access network

= Draw to the screen

= Get user input

No need to fiddle with own PCle, network drivers, or GPU drivers

Makes loading your kernel just easy



2.9 Summary

34 /45



2.9 Summary

= Hardware is complex

34 /45



2.9 Summary

= Hardware is complex

= UEFI is de-facto standard firmware interface making things easier

34 /45



2.9 Summary

= Hardware is complex
= UEFI is de-facto standard firmware interface making things easier

» Hardware manufacturers

34 /45



2.9 Summary

= Hardware is complex
= UEFI is de-facto standard firmware interface making things easier

» Hardware manufacturers

= Firmware developers

34 /45



2.9 Summary

= Hardware is complex

= UEFI is de-facto standard firmware interface making things easier
» Hardware manufacturers
= Firmware developers

= Software developers

34 /45



2.9 Summary

= Hardware is complex

= UEFI is de-facto standard firmware interface making things easier
» Hardware manufacturers
= Firmware developers

= Software developers
= EDK?2 is default UEFI implementation

34 /45



2.9 Summary

= Hardware is complex

= UEFI is de-facto standard firmware interface making things easier
» Hardware manufacturers
= Firmware developers
= Software developers

= EDK?2 is default UEFI implementation

= UEFI provides higher level abstractions to access e.g. files

34 /45



2.9 Summary

= Hardware is complex

= UEFI is de-facto standard firmware interface making things easier
» Hardware manufacturers
= Firmware developers
= Software developers

= EDK?2 is default UEFI implementation

= UEFI provides higher level abstractions to access e.g. files

= OS-loaders / bootloaders are EFl applications
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Mastering UEFI with Rust

github.com/rust-osdev/uefi-rs ( uefi library on crates.io)

Makes it easy to develop Rust software that leverages safe, convenient, and
performant abstractions for UEFI functionality.

High-level wrappers for interfacing UEFI (not an UEFI implementation!)
Maintaining since August 2022 together with Nicholas Bishop (Google)
So far, I've touched every part of the code

Code powers ChromeQS Flex notebooks and also runs in Amazon AWS
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= rustc can compile EFl applications - compiler target x86_64-unknown-uefi

= Library helps writing EFl applications

= Helps loading a kernel

= Selected highlights
= File system abstraction (proudly crafted by me &)
= Handling device paths with ease

» [ntegration of UEFI's allocator into Rust's global allocator

The device path protocol, also called a device path, is a flexible and structured sequence of binary nodes
that describes a route from the UEFI root to a particular device, controller, or file. 36 /45
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3. uefi-rs: Code Example: Hello World

Creating a no_std binary (executable)

fn main() -> Status {
uefi::helpers::init().unwrap();
info!("Hello world!");
Status: :SUCCESS
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3. uefi-rs: Code Example: Hello World

Creating a no_std binary (executable)

use core::time::Duration;

boot::stall(Duration::from_secs(10));
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#lentry]
fn main() -> Status {
Status: :SUCCESS

3
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let entry = entry.unwrap();
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3. uefi-rs: Code Example: Reading File

let kind = if entry.is_directory() { "dir" } else { "file" };
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3. uefi-rs: Code Example: Reading File

[ INFO]:
[ INFO]:
[ INFO]:

info! (

src/main.
src/main.
src/main.

Found: {kind}

rs@165: Found:
rs@165: Found:
rs@165: Found:

{}", entry.file_name());

dir .
dir ..
file BOOTX64.EFI
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let handles = boot::find_handles: :<DevicePath>().unwrap();
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3. uefi-rs: Code Example: Device Paths

for handle in handles.iter() {

}
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3. uefi-rs: Code Example: Device Paths

let maybe_dvp = unsafe {
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3. uefi-rs: Code Example: Device Paths

boot: :open_protocol: :<DevicePath>(
OpenProtocolParams { handle: *handle,
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3. uefi-rs: Code Example: Device Paths

let Ok(dvp) = maybe_dvp else { continue };
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3. uefi-rs: Code Example: Device Paths

let string = dvp.to_string(DisplayOnly(true), AllowShortcuts(false)).unwrap();
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3. uefi-rs: Code Example: Device Paths

0 ~N o oA WN B

L T s T e T e T e O e B e B |

info!("Device path: {}",

INFO]:
INFO]:
INFO]:
INFO]:
INFO]:
INFO]:
INFO]:
INFO]:

src/main.

src/main

src/main.
src/main.
src/main.

src/main

src/main.
src/main.

rs@178:
.rs@178:
rs@178:
rs@178:
rs@178:
.rs@178:
rs@178:
rs@178:

string);

Device
Device
Device
Device
Device
Device
Device
Device

path:
path:
path:
path:
path:
path:
path:
path:

Fv(7CB8BDCY-F8EB-4F34-AAEA-3EE4AF6516A1) -~

MemoryMapped(0xB, OX1FEDCOQO, OX1FF5FFFF)
PciRoot (0x0)
VenHw(EBF8ED7C-0DD1-4787-84F1-F48D537DCACF)
VenHw (28A03FF4-12B3-4305-A417-BB1A4F94081E)
VenHw(2A46715F-3581-4A55-8E73-2B769AAA30C5)
VenHw (D9DCC5DF-4007-435E-9098-8970935504B2)

PciRoot (0x0)/Pci(0x0, 0x0) v
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3. uefi-rs: How to Test? How to Run?

= Onreal hardware, i.e., developer laptop

= |naVM
= e.g., QEMU or Cloud Hypervisor with OVMF firmware

= QOVMF is an EDK2 build for Virtual Machines
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4. Code

-

GitHub: phip1611/uefi-systemd-chainloader

41745


https://github.com/phip1611/uefi-systemd-chainloader
https://github.com/phip1611/uefi-systemd-chainloader

5. Summary & Conclusion
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5. Summary

= UEFI simplifies and unifies some things
= The domain is complex, and so is UEFI
= systemd boot, GRUB, the Windows bootloader - EFI applications

= To get started: uefi crate; example project; runin VM

» github.com/rust-osdev/uefi-rs

® crates.io/crates/uefi

»  docs.rs/uefi
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5. UEFI Criticism

= Spec sometimes not specific enough

= |mplementations are often buggy (derived from EDK2)

= Qverly complex and inconsistent

= Most vendors add closed-source additions

= Tries to be a modern OS-like environment but sticks to decade old concepts
= Asingle global address space for everything
= No real multitasking

» Limited error handling and debugging
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Thank you for your
attention!



