
Writing an OS-Loader in

Rust with uefi-rs

JUG Saxony e.V. Event Series @ TU Dresden, APB — 2025-11-06 Philipp Schuster, Cyberus Technology

1. Introduction

2 / 45

1.0 Outlook

3 / 45

1.0 Outlook
UEFI is a firmware interface making things easier

3 / 45

1.0 Outlook
UEFI is a firmware interface making things easier

Hardware manufacturers

3 / 45

1.0 Outlook
UEFI is a firmware interface making things easier

Hardware manufacturers

Firmware developers

3 / 45

1.0 Outlook
UEFI is a firmware interface making things easier

Hardware manufacturers

Firmware developers

Software developers

3 / 45

1.0 Outlook
UEFI is a firmware interface making things easier

Hardware manufacturers

Firmware developers

Software developers

uefi-rs is a convenient library for UEFI in Rust

3 / 45

1.0 Outlook
UEFI is a firmware interface making things easier

Hardware manufacturers

Firmware developers

Software developers

uefi-rs is a convenient library for UEFI in Rust

Convenient high-level* abstractions for OS-loaders / bootloaders

*High-level from a low-level perspective. Not Python- or Java-like high-level. 3 / 45

1.1 About Me

4 / 45

1.1 About Me
Philipp Schuster, Dresden 🇩🇪🇪🇺

4 / 45

1.1 About Me
Philipp Schuster, Dresden 🇩🇪🇪🇺

Working at Cyberus Technology as

Software Engineer

4 / 45

1.1 About Me
Philipp Schuster, Dresden 🇩🇪🇪🇺

Working at Cyberus Technology as

Software Engineer

Nix and NixOS enthusiast

4 / 45

1.1 About Me
Philipp Schuster, Dresden 🇩🇪🇪🇺

Working at Cyberus Technology as

Software Engineer

Nix and NixOS enthusiast

Enjoy conferences and meetups

4 / 45

1.1 About Me
Philipp Schuster, Dresden 🇩🇪🇪🇺

Working at Cyberus Technology as

Software Engineer

Nix and NixOS enthusiast

Enjoy conferences and meetups

Organizing Systems Meetup

4 / 45

1.1 About Me
Philipp Schuster, Dresden 🇩🇪🇪🇺

Working at Cyberus Technology as

Software Engineer

Nix and NixOS enthusiast

Enjoy conferences and meetups

Organizing Systems Meetup

GitHub @phip1611

4 / 45

https://github.com/phip1611

1.1 About Me
Philipp Schuster, Dresden 🇩🇪🇪🇺

Working at Cyberus Technology as

Software Engineer

Nix and NixOS enthusiast

Enjoy conferences and meetups

Organizing Systems Meetup

GitHub @phip1611

Reddit @phip1611

4 / 45

https://github.com/phip1611
https://reddit.com/u/phip1611

1.1 About Me
Philipp Schuster, Dresden 🇩🇪🇪🇺

Working at Cyberus Technology as

Software Engineer

Nix and NixOS enthusiast

Enjoy conferences and meetups

Organizing Systems Meetup

GitHub @phip1611

Reddit @phip1611

Blog phip1611.de

4 / 45

https://github.com/phip1611
https://reddit.com/u/phip1611
https://phip1611.de/

1.2 My Rust Experience
Working with Rust since 2019.

5 / 45

1.2 My Rust Experience

Hobby Projects

Working with Rust since 2019.

5 / 45

1.2 My Rust Experience

Hobby Projects

github.com/rust-osdev

Working with Rust since 2019.

5 / 45

https://github.com/rust-osdev

1.2 My Rust Experience

Hobby Projects

github.com/rust-osdev

multiboot2

Working with Rust since 2019.

5 / 45

https://github.com/rust-osdev

1.2 My Rust Experience

Hobby Projects

github.com/rust-osdev

multiboot2

uefi

Working with Rust since 2019.

5 / 45

https://github.com/rust-osdev

1.2 My Rust Experience

Hobby Projects

github.com/rust-osdev

multiboot2

uefi

Author of various smaller crates

Working with Rust since 2019.

5 / 45

https://github.com/rust-osdev

1.2 My Rust Experience

Hobby Projects

github.com/rust-osdev

multiboot2

uefi

Author of various smaller crates

Work Projects

Working with Rust since 2019.

5 / 45

https://github.com/rust-osdev

1.2 My Rust Experience

Hobby Projects

github.com/rust-osdev

multiboot2

uefi

Author of various smaller crates

Work Projects

Cloud Hypervisor

Working with Rust since 2019.

5 / 45

https://github.com/rust-osdev
https://github.com/cloud-hypervisor/cloud-hypervisor

1.2 My Rust Experience

Hobby Projects

github.com/rust-osdev

multiboot2

uefi

Author of various smaller crates

Work Projects

Cloud Hypervisor

rust-vmm ecosystem

Working with Rust since 2019.

5 / 45

https://github.com/rust-osdev
https://github.com/cloud-hypervisor/cloud-hypervisor

1.3 My Relation to JUG Saxony e.V.

6 / 45

1.3 My Relation to JUG Saxony e.V.
Started studying computer science in October 2015

6 / 45

1.3 My Relation to JUG Saxony e.V.
Started studying computer science in October 2015

Started student software engineer ("Werkstudent") position at Telekom MMS

(T-Systems Multimedia Solutions GmbH)

6 / 45

1.3 My Relation to JUG Saxony e.V.
Started studying computer science in October 2015

Started student software engineer ("Werkstudent") position at Telekom MMS

(T-Systems Multimedia Solutions GmbH)

JUG Saxony Day

6 / 45

1.3 My Relation to JUG Saxony e.V.
Started studying computer science in October 2015

Started student software engineer ("Werkstudent") position at Telekom MMS

(T-Systems Multimedia Solutions GmbH)

JUG Saxony Day

2018

6 / 45

1.3 My Relation to JUG Saxony e.V.
Started studying computer science in October 2015

Started student software engineer ("Werkstudent") position at Telekom MMS

(T-Systems Multimedia Solutions GmbH)

JUG Saxony Day

2018

2022 (Speaker)

6 / 45

1.3 My Relation to JUG Saxony e.V.
Started studying computer science in October 2015

Started student software engineer ("Werkstudent") position at Telekom MMS

(T-Systems Multimedia Solutions GmbH)

JUG Saxony Day

2018

2022 (Speaker)

2025

6 / 45

1.3 My Relation to JUG Saxony e.V.
Started studying computer science in October 2015

Started student software engineer ("Werkstudent") position at Telekom MMS

(T-Systems Multimedia Solutions GmbH)

JUG Saxony Day

2018

2022 (Speaker)

2025

Personally met Falk Hartmann at EuroRust 2024 in Vienna

6 / 45

1.4 About Cyberus Technology

7 / 45

1.4 About Cyberus Technology
Founded 2017 by 6 founders in Dresden (today ≈30)

7 / 45

1.4 About Cyberus Technology
Founded 2017 by 6 founders in Dresden (today ≈30)

Independent, profitable

7 / 45

1.4 About Cyberus Technology
Founded 2017 by 6 founders in Dresden (today ≈30)

Independent, profitable

World-class expertise in x86 and virtualization

7 / 45

1.4 About Cyberus Technology
Founded 2017 by 6 founders in Dresden (today ≈30)

Independent, profitable

World-class expertise in x86 and virtualization

Main products

7 / 45

1.4 About Cyberus Technology
Founded 2017 by 6 founders in Dresden (today ≈30)

Independent, profitable

World-class expertise in x86 and virtualization

Main products

Cyberus Hypervisor (Cloud Hypervisor + Linux/KVM + Service & Expertise)

7 / 45

1.4 About Cyberus Technology
Founded 2017 by 6 founders in Dresden (today ≈30)

Independent, profitable

World-class expertise in x86 and virtualization

Main products

Cyberus Hypervisor (Cloud Hypervisor + Linux/KVM + Service & Expertise)

CTRL-OS (NixOS LTS + Embedded System Building Blocks)

7 / 45

1.4 About Cyberus Technology

8 / 45

1.4 About Cyberus Technology
Cloud department

8 / 45

1.4 About Cyberus Technology
Cloud department

Public European cloud developed with SAP ("Apeiro")

Cyberus is responsible for virtualization layer ← My work

8 / 45

1.4 About Cyberus Technology
Cloud department

Public European cloud developed with SAP ("Apeiro")

Cyberus is responsible for virtualization layer ← My work

Soon BSI*-accredited virtualization stack with open-source software

Cloud Hypervisor/KVM will be accredited

* BSI: Bundesamt für Sicherheit in der Informationstechnik 8 / 45

1.4 My Role at Cyberus Technology

9 / 45

1.4 My Role at Cyberus Technology
2021-05 – 2022-05: Student software engineer

Diplomarbeit (Master’s Thesis)

9 / 45

1.4 My Role at Cyberus Technology
2021-05 – 2022-05: Student software engineer

Diplomarbeit (Master’s Thesis)

2022-06 – present: Full time software engineer

9 / 45

1.4 My Role at Cyberus Technology
2021-05 – 2022-05: Student software engineer

Diplomarbeit (Master’s Thesis)

2022-06 – present: Full time software engineer

Everything "low in the stack"

9 / 45

1.4 My Role at Cyberus Technology
2021-05 – 2022-05: Student software engineer

Diplomarbeit (Master’s Thesis)

2022-06 – present: Full time software engineer

Everything "low in the stack"

Rust, C/C++, Assembly, …

9 / 45

1.4 My Role at Cyberus Technology
2021-05 – 2022-05: Student software engineer

Diplomarbeit (Master’s Thesis)

2022-06 – present: Full time software engineer

Everything "low in the stack"

Rust, C/C++, Assembly, …

libvirt, Linux kernel, GRUB, UEFI/edk2…

9 / 45

1.4 My Role at Cyberus Technology
2021-05 – 2022-05: Student software engineer

Diplomarbeit (Master’s Thesis)

2022-06 – present: Full time software engineer

Everything "low in the stack"

Rust, C/C++, Assembly, …

libvirt, Linux kernel, GRUB, UEFI/edk2…

Nix, NixOS, and nixpkgs

9 / 45

1.4 My Role at Cyberus Technology
2021-05 – 2022-05: Student software engineer

Diplomarbeit (Master’s Thesis)

2022-06 – present: Full time software engineer

Everything "low in the stack"

Rust, C/C++, Assembly, …

libvirt, Linux kernel, GRUB, UEFI/edk2…

Nix, NixOS, and nixpkgs

Conferences, Networking, Meetups

Organizing Dresden Systems Meetup

9 / 45

1.4 My Role at Cyberus Technology

10 / 45

1.4 My Role at Cyberus Technology
Main contributor to Cloud Hypervisor

10 / 45

1.4 My Role at Cyberus Technology
Main contributor to Cloud Hypervisor

Virtual Machine Monitor (VMM) utilizing Linux/KVM

10 / 45

1.4 My Role at Cyberus Technology
Main contributor to Cloud Hypervisor

Virtual Machine Monitor (VMM) utilizing Linux/KVM

Akin to VirtualBox or QEMU

10 / 45

1.4 My Role at Cyberus Technology
Main contributor to Cloud Hypervisor

Virtual Machine Monitor (VMM) utilizing Linux/KVM

Akin to VirtualBox or QEMU

Tailored to cloud usecase

10 / 45

1.4 My Role at Cyberus Technology
Main contributor to Cloud Hypervisor

Virtual Machine Monitor (VMM) utilizing Linux/KVM

Akin to VirtualBox or QEMU

Tailored to cloud usecase

Virtualization requires understanding every concept of the platform and

typical software stack.

10 / 45

1.5 What (Not) To Expect

11 / 45

1.5 What (Not) To Expect
We have time (60 min) → no rush

11 / 45

1.5 What (Not) To Expect
We have time (60 min) → no rush

Overview of how an x86 computer works

→ Give you a good understanding of the x86 platform.

11 / 45

1.5 What (Not) To Expect
We have time (60 min) → no rush

Overview of how an x86 computer works

→ Give you a good understanding of the x86 platform.

What is Firmware?

11 / 45

1.5 What (Not) To Expect
We have time (60 min) → no rush

Overview of how an x86 computer works

→ Give you a good understanding of the x86 platform.

What is Firmware?

UEFI: Context + Concepts

11 / 45

1.5 What (Not) To Expect
We have time (60 min) → no rush

Overview of how an x86 computer works

→ Give you a good understanding of the x86 platform.

What is Firmware?

UEFI: Context + Concepts

Rust library ("crate") uefi-rs

11 / 45

1.5 What (Not) To Expect
We have time (60 min) → no rush

Overview of how an x86 computer works

→ Give you a good understanding of the x86 platform.

What is Firmware?

UEFI: Context + Concepts

Rust library ("crate") uefi-rs

Code & Demo: Example UEFI OS-loader

* Same thing, different name: OS-loader, OS-specific loader, bootloader 11 / 45

1.6 Goal of an OS Project
Why does one need to understand the firmware?

12 / 45

1.6 Goal of an OS Project

Fully bootstrapped system (Desktop environment, sound, …)

Why does one need to understand the firmware?

12 / 45

1.6 Goal of an OS Project

Fully bootstrapped system (Desktop environment, sound, …)

Kernel running in 64-bit mode

Why does one need to understand the firmware?

12 / 45

1.6 Goal of an OS Project

Fully bootstrapped system (Desktop environment, sound, …)

Kernel running in 64-bit mode

Firmware (UEFI) eventually leads to our kernel being loaded

→ We need to understand UEFI

Why does one need to understand the firmware?

12 / 45

2. Background

13 / 45

2.1 How does a Computer Boot?

14 / 45

2.1 How does a Computer Boot?

Hardware

14 / 45

2.1 How does a Computer Boot?

Firmware (e.g., UEFI)

Hardware

14 / 45

2.1 How does a Computer Boot?

Bootloader / OS-Loader

Firmware (e.g., UEFI)

Hardware

14 / 45

2.1 How does a Computer Boot?

Kernel (Linux, Windows)

Bootloader / OS-Loader

Firmware (e.g., UEFI)

Hardware

14 / 45

2.1 How does a Computer Boot?

Runtime Environment (Ubuntu, Windows)

Kernel (Linux, Windows)

Bootloader / OS-Loader

Firmware (e.g., UEFI)

Hardware

14 / 45

2.1 How does a Computer Boot?

Runtime Environment (Ubuntu, Windows)

Kernel (Linux, Windows)

Bootloader / OS-Loader

Firmware (e.g., UEFI)

Hardware

14 / 45

2.2 CPU Terminology (x86)

15 / 45

2.2 CPU Terminology (x86)
CPU: Central Processing Unit, computing resource:

Everyday language: refers to whole package or computing resource

15 / 45

2.2 CPU Terminology (x86)
CPU: Central Processing Unit, computing resource:

Everyday language: refers to whole package or computing resource

Package/Socket/Processor*: The thing mounted onto the mainboard

* Inconsistencies even in Intel Manual (grown historically) 15 / 45

2.2 CPU Terminology (x86)
CPU: Central Processing Unit, computing resource:

Everyday language: refers to whole package or computing resource

Package/Socket/Processor*: The thing mounted onto the mainboard

Die: Holds cores, caches, and additional logic (I/O, L3 cache)

* Inconsistencies even in Intel Manual (grown historically) 15 / 45

2.2 CPU Terminology (x86)
CPU: Central Processing Unit, computing resource:

Everyday language: refers to whole package or computing resource

Package/Socket/Processor*: The thing mounted onto the mainboard

Die: Holds cores, caches, and additional logic (I/O, L3 cache)

Core: Independent execution engine (L1, L2 caches)

* Inconsistencies even in Intel Manual (grown historically) 15 / 45

2.2 CPU Terminology (x86)
CPU: Central Processing Unit, computing resource:

Everyday language: refers to whole package or computing resource

Package/Socket/Processor*: The thing mounted onto the mainboard

Die: Holds cores, caches, and additional logic (I/O, L3 cache)

Core: Independent execution engine (L1, L2 caches)

(Logical) CPU:

* Inconsistencies even in Intel Manual (grown historically) 15 / 45

2.2 CPU Terminology (x86)
CPU: Central Processing Unit, computing resource:

Everyday language: refers to whole package or computing resource

Package/Socket/Processor*: The thing mounted onto the mainboard

Die: Holds cores, caches, and additional logic (I/O, L3 cache)

Core: Independent execution engine (L1, L2 caches)

(Logical) CPU:

Software-visible computing resource within a core

* Inconsistencies even in Intel Manual (grown historically) 15 / 45

2.2 CPU Terminology (x86)
CPU: Central Processing Unit, computing resource:

Everyday language: refers to whole package or computing resource

Package/Socket/Processor*: The thing mounted onto the mainboard

Die: Holds cores, caches, and additional logic (I/O, L3 cache)

Core: Independent execution engine (L1, L2 caches)

(Logical) CPU:

Software-visible computing resource within a core

Implements the instruction set ("API of the CPU")

* Inconsistencies even in Intel Manual (grown historically) 15 / 45

2.2 CPU Terminology (x86)
CPU: Central Processing Unit, computing resource:

Everyday language: refers to whole package or computing resource

Package/Socket/Processor*: The thing mounted onto the mainboard

Die: Holds cores, caches, and additional logic (I/O, L3 cache)

Core: Independent execution engine (L1, L2 caches)

(Logical) CPU:

Software-visible computing resource within a core

Implements the instruction set ("API of the CPU")

Often fluid transitions and overlaps (architecture, manufacturer, platform)

* Inconsistencies even in Intel Manual (grown historically) 15 / 45

2.3 The many modes of an x86 CPU

16 / 45

2.3 The many modes of an x86 CPU
16-bit ("real mode")

16 / 45

2.3 The many modes of an x86 CPU
16-bit ("real mode")

32-bit protected mode, without paging

16 / 45

2.3 The many modes of an x86 CPU
16-bit ("real mode")

32-bit protected mode, without paging

32-bit protected mode, with paging

16 / 45

2.3 The many modes of an x86 CPU
16-bit ("real mode")

32-bit protected mode, without paging

32-bit protected mode, with paging

64-bit with 32-bit opcodes ("compatibility IA-32e mode")

→ Allows 32-bit software in an 64-bit operating system

16 / 45

2.3 The many modes of an x86 CPU
16-bit ("real mode")

32-bit protected mode, without paging

32-bit protected mode, with paging

64-bit with 32-bit opcodes ("compatibility IA-32e mode")

→ Allows 32-bit software in an 64-bit operating system

64-bit mode ("64-bit IA-32e mode" , "long mode")Intel AMD

16 / 45

2.4 Overview of an x86 Computer

17 / 45

2.4 Overview of an x86 Computer
Platform/SoC: Processor + Chipset

17 / 45

2.4 Overview of an x86 Computer
Platform/SoC: Processor + Chipset

Mainboard: Processor + Chipset + additional stuff (ports, power units)

17 / 45

2.4 Overview of an x86 Computer
Platform/SoC: Processor + Chipset

Mainboard: Processor + Chipset + additional stuff (ports, power units)

Chipset

17 / 45

2.4 Overview of an x86 Computer
Platform/SoC: Processor + Chipset

Mainboard: Processor + Chipset + additional stuff (ports, power units)

Chipset

Necessary logical functionality for CPU to work

17 / 45

2.4 Overview of an x86 Computer
Platform/SoC: Processor + Chipset

Mainboard: Processor + Chipset + additional stuff (ports, power units)

Chipset

Necessary logical functionality for CPU to work

Built into your mainboard

17 / 45

2.4 Overview of an x86 Computer
Platform/SoC: Processor + Chipset

Mainboard: Processor + Chipset + additional stuff (ports, power units)

Chipset

Necessary logical functionality for CPU to work

Built into your mainboard

Managing data flow between processor and memory & peripherals

17 / 45

2.4 Overview of an x86 Computer
Platform/SoC: Processor + Chipset

Mainboard: Processor + Chipset + additional stuff (ports, power units)

Chipset

Necessary logical functionality for CPU to work

Built into your mainboard

Managing data flow between processor and memory & peripherals

PCIe

17 / 45

2.4 Overview of an x86 Computer
Platform/SoC: Processor + Chipset

Mainboard: Processor + Chipset + additional stuff (ports, power units)

Chipset

Necessary logical functionality for CPU to work

Built into your mainboard

Managing data flow between processor and memory & peripherals

PCIe

Main interface/bus to orchestrate hardware and connect with chipset

17 / 45

2.4 Overview of an x86 Computer
Platform/SoC: Processor + Chipset

Mainboard: Processor + Chipset + additional stuff (ports, power units)

Chipset

Necessary logical functionality for CPU to work

Built into your mainboard

Managing data flow between processor and memory & peripherals

PCIe

Main interface/bus to orchestrate hardware and connect with chipset

Controller typically integrated into processor

17 / 45

2.4 Overview of an x86 Computer
Platform/SoC: Processor + Chipset

Mainboard: Processor + Chipset + additional stuff (ports, power units)

Chipset

Necessary logical functionality for CPU to work

Built into your mainboard

Managing data flow between processor and memory & peripherals

PCIe

Main interface/bus to orchestrate hardware and connect with chipset

Controller typically integrated into processor

Chipset has PCIe lanes
17 / 45

2.4 Processor, Chipset, Hardware

18 / 45

2.4 Processor, Chipset, Hardware
Platform Controller Hub (PCH)

18 / 45

2.4 Processor, Chipset, Hardware
Platform Controller Hub (PCH)

Intel’s name for a chipset family

18 / 45

2.4 Processor, Chipset, Hardware
Platform Controller Hub (PCH)

Intel’s name for a chipset family

Before 2009: "Northbridge" + "Southbridge"

18 / 45

2.4 Processor, Chipset, Hardware
Platform Controller Hub (PCH)

Intel’s name for a chipset family

Before 2009: "Northbridge" + "Southbridge"

Connects socket (processor) with memory, PCI lanes, power, …

18 / 45

2.4 Processor, Chipset, Hardware
Platform Controller Hub (PCH)

Intel’s name for a chipset family

Before 2009: "Northbridge" + "Southbridge"

Connects socket (processor) with memory, PCI lanes, power, …

Example: USB controller and NVME controller appear as PCIe device

18 / 45

2.4 Processor, Chipset, Hardware
Platform Controller Hub (PCH)

Intel’s name for a chipset family

Before 2009: "Northbridge" + "Southbridge"

Connects socket (processor) with memory, PCI lanes, power, …

Example: USB controller and NVME controller appear as PCIe device

Trivia: Mainboard manufacturer buys chipset IC(s) from Intel (e.g. Z390) and

wires PCI lanes, memory bus, device slots. etc. as needed by the

corresponding PCH spec + additional custom things

IC: Integrated Circuit 18 / 45

2.5 Accessing Hardware

19 / 45

2.5 Accessing Hardware

Memory-Mapped I/O (MMIO)

19 / 45

2.5 Accessing Hardware

Memory-Mapped I/O (MMIO)

Physical memory addresses map to

19 / 45

2.5 Accessing Hardware

Memory-Mapped I/O (MMIO)

Physical memory addresses map to

RAM cells

19 / 45

2.5 Accessing Hardware

Memory-Mapped I/O (MMIO)

Physical memory addresses map to

RAM cells

Device registers

19 / 45

2.5 Accessing Hardware

Memory-Mapped I/O (MMIO)

Physical memory addresses map to

RAM cells

Device registers

GPIO pin, …

19 / 45

2.5 Accessing Hardware

Memory-Mapped I/O (MMIO)

Physical memory addresses map to

RAM cells

Device registers

GPIO pin, …

mov src, dst instructions

19 / 45

2.5 Accessing Hardware

Memory-Mapped I/O (MMIO)

Physical memory addresses map to

RAM cells

Device registers

GPIO pin, …

mov src, dst instructions

Port I/O (PIO)

19 / 45

2.5 Accessing Hardware

Memory-Mapped I/O (MMIO)

Physical memory addresses map to

RAM cells

Device registers

GPIO pin, …

mov src, dst instructions

Port I/O (PIO)

X86 has a Port I/O address space

19 / 45

2.5 Accessing Hardware

Memory-Mapped I/O (MMIO)

Physical memory addresses map to

RAM cells

Device registers

GPIO pin, …

mov src, dst instructions

Port I/O (PIO)

X86 has a Port I/O address space

“Write byte A to Port B”

19 / 45

2.5 Accessing Hardware

Memory-Mapped I/O (MMIO)

Physical memory addresses map to

RAM cells

Device registers

GPIO pin, …

mov src, dst instructions

Port I/O (PIO)

X86 has a Port I/O address space

“Write byte A to Port B”

Port may map to a device register

19 / 45

2.5 Accessing Hardware

Memory-Mapped I/O (MMIO)

Physical memory addresses map to

RAM cells

Device registers

GPIO pin, …

mov src, dst instructions

Port I/O (PIO)

X86 has a Port I/O address space

“Write byte A to Port B”

Port may map to a device register

in/out instructions

19 / 45

That was a lot 😲 hardware is complex

20 / 45

That was a lot 😲 hardware is complex

Understanding the interfaces is key

20 / 45

That was a lot 😲 hardware is complex

Understanding the interfaces is key

20 / 45

2.6 Firmware

21 / 45

2.6 Firmware
You need software to load software

21 / 45

2.6 Firmware
You need software to load software

Software that is not installable in the classic way

21 / 45

2.6 Firmware
You need software to load software

Software that is not installable in the classic way

On-board in a simple chip with simple interface (just raw bytes)

21 / 45

2.6 Firmware
You need software to load software

Software that is not installable in the classic way

On-board in a simple chip with simple interface (just raw bytes)

Technically "just normal" software

21 / 45

2.6 Firmware
You need software to load software

Software that is not installable in the classic way

On-board in a simple chip with simple interface (just raw bytes)

Technically "just normal" software

Examples:

21 / 45

2.6 Firmware
You need software to load software

Software that is not installable in the classic way

On-board in a simple chip with simple interface (just raw bytes)

Technically "just normal" software

Examples:

Interfaces: Legacy BIOS ("IBM PC"), UEFI

21 / 45

2.6 Firmware
You need software to load software

Software that is not installable in the classic way

On-board in a simple chip with simple interface (just raw bytes)

Technically "just normal" software

Examples:

Interfaces: Legacy BIOS ("IBM PC"), UEFI

Implementation: SeaBIOS, Coreboot, EDK2

21 / 45

2.6 Firmware
You need software to load software

Software that is not installable in the classic way

On-board in a simple chip with simple interface (just raw bytes)

Technically "just normal" software

Examples:

Interfaces: Legacy BIOS ("IBM PC"), UEFI

Implementation: SeaBIOS, Coreboot, EDK2

From CPU perspective: doesn’t know firmware variant

21 / 45

2.6 Firmware

22 / 45

2.6 Firmware
Bootstraps the platform ("Platform initialization")

22 / 45

2.6 Firmware
Bootstraps the platform ("Platform initialization")

Brings platform and CPU into defined state

22 / 45

2.6 Firmware
Bootstraps the platform ("Platform initialization")

Brings platform and CPU into defined state

Determines interface for bootloader

22 / 45

2.6 Firmware
Bootstraps the platform ("Platform initialization")

Brings platform and CPU into defined state

Determines interface for bootloader

Executable format

22 / 45

2.6 Firmware
Bootstraps the platform ("Platform initialization")

Brings platform and CPU into defined state

Determines interface for bootloader

Executable format

Environment

22 / 45

2.6 Trivia: Intel SDM: Initialization

2.6 Trivia: Intel SDM: Initialization
Keyword: "Hardware Reset"

2.6 Trivia: Intel SDM: Initialization
Keyword: "Hardware Reset"

10. Processor Management and Initialization

2.6 Trivia: Intel SDM: Initialization
Keyword: "Hardware Reset"

10. Processor Management and Initialization

10.1 INITIALIZATION OVERVIEW

10.1.4 First Instruction Executed

→ Hardware software co-design

2.7 UEFI
Towards a unified firmware.

24 / 45

2.7 UEFI

This Unified Extensible Firmware Interface (UEFI) Specification describes an interface

between the operating system (OS) and the platform firmware.

Towards a unified firmware.

24 / 45

2.7 UEFI

This Unified Extensible Firmware Interface (UEFI) Specification describes an interface

between the operating system (OS) and the platform firmware.

[…]

The interface is in the form of data tables that contain platform-related information,

and boot and runtime service calls that are available to the OS loader and the OS.

Together, these provide a standard environment for booting an OS.

Towards a unified firmware.

24 / 45

2.7 UEFI

25 / 45

2.7 UEFI
Unified Extensible Firmware Interface

25 / 45

2.7 UEFI
Unified Extensible Firmware Interface

Developed by Tianocore community

25 / 45

2.7 UEFI
Unified Extensible Firmware Interface

Developed by Tianocore community

"EDK2"

25 / 45

2.7 UEFI
Unified Extensible Firmware Interface

Developed by Tianocore community

"EDK2"

Build system

25 / 45

2.7 UEFI
Unified Extensible Firmware Interface

Developed by Tianocore community

"EDK2"

Build system

Reference implementation written in C, C++, and Assembly

25 / 45

2.7 UEFI
Unified Extensible Firmware Interface

Developed by Tianocore community

"EDK2"

Build system

Reference implementation written in C, C++, and Assembly

Open source on GitHub

25 / 45

2.7 UEFI
Unified Extensible Firmware Interface

Developed by Tianocore community

"EDK2"

Build system

Reference implementation written in C, C++, and Assembly

Open source on GitHub

Other implementations exists

25 / 45

2.7 UEFI

26 / 45

2.7 UEFI
Gives us a defined machine state

26 / 45

2.7 UEFI
Gives us a defined machine state

64-bit mode, yay!

26 / 45

2.7 UEFI
Gives us a defined machine state

64-bit mode, yay!

Only one CPU ("Bootstrap Processor" (BSP))

26 / 45

2.7 UEFI
Gives us a defined machine state

64-bit mode, yay!

Only one CPU ("Bootstrap Processor" (BSP))

Others are ready to be woken up ("Application Processors" (APs))

26 / 45

2.7 UEFI
Gives us a defined machine state

64-bit mode, yay!

Only one CPU ("Bootstrap Processor" (BSP))

Others are ready to be woken up ("Application Processors" (APs))

Can load EFI images (binaries, executables)

26 / 45

2.7 UEFI
Gives us a defined machine state

64-bit mode, yay!

Only one CPU ("Bootstrap Processor" (BSP))

Others are ready to be woken up ("Application Processors" (APs))

Can load EFI images (binaries, executables)

Similar to starting an .exe on Windows

26 / 45

2.7 UEFI
Gives us a defined machine state

64-bit mode, yay!

Only one CPU ("Bootstrap Processor" (BSP))

Others are ready to be woken up ("Application Processors" (APs))

Can load EFI images (binaries, executables)

Similar to starting an .exe on Windows

Stack is provided

26 / 45

2.7 UEFI
Gives us a defined machine state

64-bit mode, yay!

Only one CPU ("Bootstrap Processor" (BSP))

Others are ready to be woken up ("Application Processors" (APs))

Can load EFI images (binaries, executables)

Similar to starting an .exe on Windows

Stack is provided

UEFI functionality is callable from EFI image

26 / 45

2.7 UEFI

27 / 45

2.7 UEFI
Fixed set of functionality ("services") + variable part ("protocols")

27 / 45

2.7 UEFI
Fixed set of functionality ("services") + variable part ("protocols")

Services are callable functions

27 / 45

2.7 UEFI
Fixed set of functionality ("services") + variable part ("protocols")

Services are callable functions

Protocols are somewhat like interfaces in Java or traits in Rust

27 / 45

2.7 UEFI
Fixed set of functionality ("services") + variable part ("protocols")

Services are callable functions

Protocols are somewhat like interfaces in Java or traits in Rust

Two phases

27 / 45

2.7 UEFI
Fixed set of functionality ("services") + variable part ("protocols")

Services are callable functions

Protocols are somewhat like interfaces in Java or traits in Rust

Two phases

Boot-Services

27 / 45

2.7 UEFI
Fixed set of functionality ("services") + variable part ("protocols")

Services are callable functions

Protocols are somewhat like interfaces in Java or traits in Rust

Two phases

Boot-Services

UEFI has full control over hardware (like an OS)

27 / 45

2.7 UEFI
Fixed set of functionality ("services") + variable part ("protocols")

Services are callable functions

Protocols are somewhat like interfaces in Java or traits in Rust

Two phases

Boot-Services

UEFI has full control over hardware (like an OS)

Provide feature-rich and high(er)-level interface to hardware

27 / 45

2.7 UEFI
Fixed set of functionality ("services") + variable part ("protocols")

Services are callable functions

Protocols are somewhat like interfaces in Java or traits in Rust

Two phases

Boot-Services

UEFI has full control over hardware (like an OS)

Provide feature-rich and high(er)-level interface to hardware

Must be exited before OS can take over control

27 / 45

2.7 UEFI
Fixed set of functionality ("services") + variable part ("protocols")

Services are callable functions

Protocols are somewhat like interfaces in Java or traits in Rust

Two phases

Boot-Services

UEFI has full control over hardware (like an OS)

Provide feature-rich and high(er)-level interface to hardware

Must be exited before OS can take over control

Runtime-Services

27 / 45

2.7 UEFI
Fixed set of functionality ("services") + variable part ("protocols")

Services are callable functions

Protocols are somewhat like interfaces in Java or traits in Rust

Two phases

Boot-Services

UEFI has full control over hardware (like an OS)

Provide feature-rich and high(er)-level interface to hardware

Must be exited before OS can take over control

Runtime-Services

Tiny fraction of remaining functionality: System time, UEFI variables
27 / 45

2.7 UEFI

28 / 45

2.7 UEFI
Identifies resources and abstracts device access with EFI_HANDLE s

28 / 45

2.7 UEFI
Identifies resources and abstracts device access with EFI_HANDLE s

Handles know their associated protocols

28 / 45

2.7 UEFI
Identifies resources and abstracts device access with EFI_HANDLE s

Handles know their associated protocols

Technically, a protocol is a C struct holding functions and/or data,

with an associated GUID

1 typedef struct _EFI_SIMPLE_FILE_SYSTEM_PROTOCOL {
2 UINT64 Revision;
3 // This is a function pointer
4 EFI_SIMPLE_FILE_SYSTEM_PROTOCOL_OPEN_VOLUME OpenVolume;
5 } EFI_SIMPLE_FILE_SYSTEM_PROTOCOL;

28 / 45

2.7 UEFI
Identifies resources and abstracts device access with EFI_HANDLE s

Handles know their associated protocols

Technically, a protocol is a C struct holding functions and/or data,

with an associated GUID

1 typedef struct _EFI_SIMPLE_FILE_SYSTEM_PROTOCOL {

5 } EFI_SIMPLE_FILE_SYSTEM_PROTOCOL;

2 UINT64 Revision;
3 // This is a function pointer
4 EFI_SIMPLE_FILE_SYSTEM_PROTOCOL_OPEN_VOLUME OpenVolume;

28 / 45

2.7 UEFI
Identifies resources and abstracts device access with EFI_HANDLE s

Handles know their associated protocols

Technically, a protocol is a C struct holding functions and/or data,

with an associated GUID

2 UINT64 Revision;
1 typedef struct _EFI_SIMPLE_FILE_SYSTEM_PROTOCOL {

3 // This is a function pointer
4 EFI_SIMPLE_FILE_SYSTEM_PROTOCOL_OPEN_VOLUME OpenVolume;
5 } EFI_SIMPLE_FILE_SYSTEM_PROTOCOL;

28 / 45

2.7 UEFI
Identifies resources and abstracts device access with EFI_HANDLE s

Handles know their associated protocols

Technically, a protocol is a C struct holding functions and/or data,

with an associated GUID

3 // This is a function pointer
4 EFI_SIMPLE_FILE_SYSTEM_PROTOCOL_OPEN_VOLUME OpenVolume;

1 typedef struct _EFI_SIMPLE_FILE_SYSTEM_PROTOCOL {
2 UINT64 Revision;

5 } EFI_SIMPLE_FILE_SYSTEM_PROTOCOL;

28 / 45

2.7 UEFI
Identifies resources and abstracts device access with EFI_HANDLE s

Handles know their associated protocols

Technically, a protocol is a C struct holding functions and/or data,

with an associated GUID

1 typedef struct _EFI_SIMPLE_FILE_SYSTEM_PROTOCOL {
2 UINT64 Revision;
3 // This is a function pointer
4 EFI_SIMPLE_FILE_SYSTEM_PROTOCOL_OPEN_VOLUME OpenVolume;
5 } EFI_SIMPLE_FILE_SYSTEM_PROTOCOL;

28 / 45

2.7 UEFI

29 / 45

2.7 UEFI
Boot service examples

29 / 45

2.7 UEFI
Boot service examples

OpenProtocol() : Tries opening a protocol on a given handle

29 / 45

2.7 UEFI
Boot service examples

OpenProtocol() : Tries opening a protocol on a given handle

LocateHandle() : Finds handles supporting a given protocol

29 / 45

2.7 UEFI
Boot service examples

OpenProtocol() : Tries opening a protocol on a given handle

LocateHandle() : Finds handles supporting a given protocol

Protocol examples

29 / 45

2.7 UEFI
Boot service examples

OpenProtocol() : Tries opening a protocol on a given handle

LocateHandle() : Finds handles supporting a given protocol

Protocol examples

EFI_GRAPHICS_OUTPUT_PROTOCOL :

Draw to framebuffer

29 / 45

2.7 UEFI
Boot service examples

OpenProtocol() : Tries opening a protocol on a given handle

LocateHandle() : Finds handles supporting a given protocol

Protocol examples

EFI_GRAPHICS_OUTPUT_PROTOCOL :

Draw to framebuffer

EFI_SIMPLE_FILE_SYSTEM_PROTOCOL :

Access files

29 / 45

2.7 UEFI: Extensible?
By 3rd Party Hardware

30 / 45

2.7 UEFI: Extensible?

PCIe devices can advertise additional UEFI drivers ("Option ROM")

By 3rd Party Hardware

30 / 45

2.7 UEFI: Extensible?

PCIe devices can advertise additional UEFI drivers ("Option ROM")

Examples

By 3rd Party Hardware

30 / 45

2.7 UEFI: Extensible?

PCIe devices can advertise additional UEFI drivers ("Option ROM")

Examples

An NVIDIA GPU may install the EFI_GRAPHICS_OUTPUT_PROTOCOL on its

corresponding handle

By 3rd Party Hardware

30 / 45

2.7 UEFI: Extensible?

PCIe devices can advertise additional UEFI drivers ("Option ROM")

Examples

An NVIDIA GPU may install the EFI_GRAPHICS_OUTPUT_PROTOCOL on its

corresponding handle

A network card may install the EFI_PXE_BASE_CODE_PROTOCOL on its

corresponding handle

By 3rd Party Hardware

30 / 45

2.7 UEFI: Extensible?

PCIe devices can advertise additional UEFI drivers ("Option ROM")

Examples

An NVIDIA GPU may install the EFI_GRAPHICS_OUTPUT_PROTOCOL on its

corresponding handle

A network card may install the EFI_PXE_BASE_CODE_PROTOCOL on its

corresponding handle

UEFI firmware may also have built-in drivers for common hardware

By 3rd Party Hardware

30 / 45

2.7 UEFI: Extensible?

PCIe devices can advertise additional UEFI drivers ("Option ROM")

Examples

An NVIDIA GPU may install the EFI_GRAPHICS_OUTPUT_PROTOCOL on its

corresponding handle

A network card may install the EFI_PXE_BASE_CODE_PROTOCOL on its

corresponding handle

UEFI firmware may also have built-in drivers for common hardware

We as software developers can use them

By 3rd Party Hardware

30 / 45

2.7 UEFI: Extensible?
By software developers

31 / 45

2.7 UEFI: Extensible?

In our OS loader, we can install protocols or use protocols on any handle

By software developers

31 / 45

2.7 UEFI: Extensible?

In our OS loader, we can install protocols or use protocols on any handle

We may chainload another bootloader (systemd boot, Windows bootloader)

By software developers

31 / 45

2.7 UEFI: Extensible?

In our OS loader, we can install protocols or use protocols on any handle

We may chainload another bootloader (systemd boot, Windows bootloader)

A lot of options!

By software developers

31 / 45

2.8 Utilizing UEFI

2.8 Utilizing UEFI
Writing your own (portable) OS-loader is easy

2.8 Utilizing UEFI
Writing your own (portable) OS-loader is easy

Defined executable file format 🎉 (somewhat similar to .exe)

2.8 Utilizing UEFI
Writing your own (portable) OS-loader is easy

Defined executable file format 🎉 (somewhat similar to .exe)

Subset of PE32+ file format (Windows’ .exe format)

2.8 Utilizing UEFI
Writing your own (portable) OS-loader is easy

Defined executable file format 🎉 (somewhat similar to .exe)

Subset of PE32+ file format (Windows’ .exe format)

By default, loaded from <drive>\EFI\BOOT\BOOTX64.EFI (FAT partition)

2.8 Utilizing UEFI
Writing your own (portable) OS-loader is easy

Defined executable file format 🎉 (somewhat similar to .exe)

Subset of PE32+ file format (Windows’ .exe format)

By default, loaded from <drive>\EFI\BOOT\BOOTX64.EFI (FAT partition)

We can use extended functionality with UEFI protocols

2.8 Utilizing UEFI
Writing your own (portable) OS-loader is easy

Defined executable file format 🎉 (somewhat similar to .exe)

Subset of PE32+ file format (Windows’ .exe format)

By default, loaded from <drive>\EFI\BOOT\BOOTX64.EFI (FAT partition)

We can use extended functionality with UEFI protocols

EFI_GRAPHICS_OUTPUT_PROTOCOL : No extra GPU driver needed

2.8 Utilizing UEFI
Writing your own (portable) OS-loader is easy

Defined executable file format 🎉 (somewhat similar to .exe)

Subset of PE32+ file format (Windows’ .exe format)

By default, loaded from <drive>\EFI\BOOT\BOOTX64.EFI (FAT partition)

We can use extended functionality with UEFI protocols

EFI_GRAPHICS_OUTPUT_PROTOCOL : No extra GPU driver needed

EFI_PXE_BASE_CODE_PROTOCOL : No extra TCP + PXE driver needed

2.8 Utilizing UEFI
Writing your own (portable) OS-loader is easy

Defined executable file format 🎉 (somewhat similar to .exe)

Subset of PE32+ file format (Windows’ .exe format)

By default, loaded from <drive>\EFI\BOOT\BOOTX64.EFI (FAT partition)

We can use extended functionality with UEFI protocols

EFI_GRAPHICS_OUTPUT_PROTOCOL : No extra GPU driver needed

EFI_PXE_BASE_CODE_PROTOCOL : No extra TCP + PXE driver needed

EFI_SIMPLE_FILE_SYSTEM_PROTOCOL : No extra NVMe or FAT driver needed

2.8 Utilizing UEFI
Writing your own (portable) OS-loader is easy

Defined executable file format 🎉 (somewhat similar to .exe)

Subset of PE32+ file format (Windows’ .exe format)

By default, loaded from <drive>\EFI\BOOT\BOOTX64.EFI (FAT partition)

We can use extended functionality with UEFI protocols

EFI_GRAPHICS_OUTPUT_PROTOCOL : No extra GPU driver needed

EFI_PXE_BASE_CODE_PROTOCOL : No extra TCP + PXE driver needed

EFI_SIMPLE_FILE_SYSTEM_PROTOCOL : No extra NVMe or FAT driver needed

OS-loader typically exits boot services

2.8 Utilizing UEFI
Writing your own (portable) OS-loader is easy

Defined executable file format 🎉 (somewhat similar to .exe)

Subset of PE32+ file format (Windows’ .exe format)

By default, loaded from <drive>\EFI\BOOT\BOOTX64.EFI (FAT partition)

We can use extended functionality with UEFI protocols

EFI_GRAPHICS_OUTPUT_PROTOCOL : No extra GPU driver needed

EFI_PXE_BASE_CODE_PROTOCOL : No extra TCP + PXE driver needed

EFI_SIMPLE_FILE_SYSTEM_PROTOCOL : No extra NVMe or FAT driver needed

OS-loader typically exits boot services

Kernel has its own drivers (PCIe, NVMe)

2.8 Utilizing UEFI: In a Nutshell
From Developer Perspective

2.8 Utilizing UEFI: In a Nutshell

We have an OS-like environment

From Developer Perspective

2.8 Utilizing UEFI: In a Nutshell

We have an OS-like environment

Higher-level abstractions to

From Developer Perspective

2.8 Utilizing UEFI: In a Nutshell

We have an OS-like environment

Higher-level abstractions to

Load files

From Developer Perspective

2.8 Utilizing UEFI: In a Nutshell

We have an OS-like environment

Higher-level abstractions to

Load files

Access network

From Developer Perspective

2.8 Utilizing UEFI: In a Nutshell

We have an OS-like environment

Higher-level abstractions to

Load files

Access network

Draw to the screen

From Developer Perspective

2.8 Utilizing UEFI: In a Nutshell

We have an OS-like environment

Higher-level abstractions to

Load files

Access network

Draw to the screen

Get user input

From Developer Perspective

2.8 Utilizing UEFI: In a Nutshell

We have an OS-like environment

Higher-level abstractions to

Load files

Access network

Draw to the screen

Get user input

No need to fiddle with own PCIe, network drivers, or GPU drivers

From Developer Perspective

2.8 Utilizing UEFI: In a Nutshell

We have an OS-like environment

Higher-level abstractions to

Load files

Access network

Draw to the screen

Get user input

No need to fiddle with own PCIe, network drivers, or GPU drivers

Makes loading your kernel just easy

From Developer Perspective

2.9 Summary

34 / 45

2.9 Summary
Hardware is complex

34 / 45

2.9 Summary
Hardware is complex

UEFI is de-facto standard firmware interface making things easier

34 / 45

2.9 Summary
Hardware is complex

UEFI is de-facto standard firmware interface making things easier

Hardware manufacturers

34 / 45

2.9 Summary
Hardware is complex

UEFI is de-facto standard firmware interface making things easier

Hardware manufacturers

Firmware developers

34 / 45

2.9 Summary
Hardware is complex

UEFI is de-facto standard firmware interface making things easier

Hardware manufacturers

Firmware developers

Software developers

34 / 45

2.9 Summary
Hardware is complex

UEFI is de-facto standard firmware interface making things easier

Hardware manufacturers

Firmware developers

Software developers

EDK2 is default UEFI implementation

34 / 45

2.9 Summary
Hardware is complex

UEFI is de-facto standard firmware interface making things easier

Hardware manufacturers

Firmware developers

Software developers

EDK2 is default UEFI implementation

UEFI provides higher level abstractions to access e.g. files

34 / 45

2.9 Summary
Hardware is complex

UEFI is de-facto standard firmware interface making things easier

Hardware manufacturers

Firmware developers

Software developers

EDK2 is default UEFI implementation

UEFI provides higher level abstractions to access e.g. files

OS-loaders / bootloaders are EFI applications

34 / 45

3. uefi-rs
Mastering UEFI with Rust

35 / 45

3. uefi-rs

github.com/rust-osdev/uefi-rs (uefi library on crates.io)

Mastering UEFI with Rust

35 / 45

https://github.com/rust-osdev/uefi-rs

3. uefi-rs

github.com/rust-osdev/uefi-rs (uefi library on crates.io)

Makes it easy to develop Rust software that leverages safe, convenient, and

performant abstractions for UEFI functionality.

Mastering UEFI with Rust

35 / 45

https://github.com/rust-osdev/uefi-rs

3. uefi-rs

github.com/rust-osdev/uefi-rs (uefi library on crates.io)

Makes it easy to develop Rust software that leverages safe, convenient, and

performant abstractions for UEFI functionality.

High-level wrappers for interfacing UEFI (not an UEFI implementation!)

Mastering UEFI with Rust

35 / 45

https://github.com/rust-osdev/uefi-rs

3. uefi-rs

github.com/rust-osdev/uefi-rs (uefi library on crates.io)

Makes it easy to develop Rust software that leverages safe, convenient, and

performant abstractions for UEFI functionality.

High-level wrappers for interfacing UEFI (not an UEFI implementation!)

Maintaining since August 2022 together with Nicholas Bishop (Google)

Mastering UEFI with Rust

35 / 45

https://github.com/rust-osdev/uefi-rs

3. uefi-rs

github.com/rust-osdev/uefi-rs (uefi library on crates.io)

Makes it easy to develop Rust software that leverages safe, convenient, and

performant abstractions for UEFI functionality.

High-level wrappers for interfacing UEFI (not an UEFI implementation!)

Maintaining since August 2022 together with Nicholas Bishop (Google)

So far, I’ve touched every part of the code

Mastering UEFI with Rust

35 / 45

https://github.com/rust-osdev/uefi-rs

3. uefi-rs

github.com/rust-osdev/uefi-rs (uefi library on crates.io)

Makes it easy to develop Rust software that leverages safe, convenient, and

performant abstractions for UEFI functionality.

High-level wrappers for interfacing UEFI (not an UEFI implementation!)

Maintaining since August 2022 together with Nicholas Bishop (Google)

So far, I’ve touched every part of the code

Code powers ChromeOS Flex notebooks and also runs in Amazon AWS

Mastering UEFI with Rust

35 / 45

https://github.com/rust-osdev/uefi-rs

3. uefi-rs

36 / 45

3. uefi-rs
rustc can compile EFI applications → compiler target x86_64-unknown-uefi

36 / 45

3. uefi-rs
rustc can compile EFI applications → compiler target x86_64-unknown-uefi

Library helps writing EFI applications

36 / 45

3. uefi-rs
rustc can compile EFI applications → compiler target x86_64-unknown-uefi

Library helps writing EFI applications

Helps loading a kernel

36 / 45

3. uefi-rs
rustc can compile EFI applications → compiler target x86_64-unknown-uefi

Library helps writing EFI applications

Helps loading a kernel

Selected highlights

36 / 45

3. uefi-rs
rustc can compile EFI applications → compiler target x86_64-unknown-uefi

Library helps writing EFI applications

Helps loading a kernel

Selected highlights

File system abstraction (proudly crafted by me 😃)

36 / 45

3. uefi-rs
rustc can compile EFI applications → compiler target x86_64-unknown-uefi

Library helps writing EFI applications

Helps loading a kernel

Selected highlights

File system abstraction (proudly crafted by me 😃)

Handling device paths with ease

The device path protocol, also called a device path, is a flexible and structured sequence of binary nodes

that describes a route from the UEFI root to a particular device, controller, or file. 36 / 45

3. uefi-rs
rustc can compile EFI applications → compiler target x86_64-unknown-uefi

Library helps writing EFI applications

Helps loading a kernel

Selected highlights

File system abstraction (proudly crafted by me 😃)

Handling device paths with ease

Integration of UEFI’s allocator into Rust’s global allocator

The device path protocol, also called a device path, is a flexible and structured sequence of binary nodes

that describes a route from the UEFI root to a particular device, controller, or file. 36 / 45

3. uefi-rs: Code Example: Hello World
Creating a no_std binary (executable)

1 #![no_main]
2 #![no_std]

37 / 45

3. uefi-rs: Code Example: Hello World
Creating a no_std binary (executable)

#![no_main]1
2 #![no_std]

37 / 45

3. uefi-rs: Code Example: Hello World
Creating a no_std binary (executable)

#![no_std]
1 #![no_main]
2

37 / 45

3. uefi-rs: Code Example: Hello World
Creating a no_std binary (executable)

1 #![no_main]
2 #![no_std]
3
4 use uefi::prelude::*;
5
6 #[entry]
7 fn main() -> Status {
8 Status::SUCCESS
9 }

37 / 45

3. uefi-rs: Code Example: Hello World
Creating a no_std binary (executable)

use uefi::prelude::*;

1 #![no_main]
2 #![no_std]
3
4
5
6 #[entry]
7 fn main() -> Status {
8 Status::SUCCESS
9 }

37 / 45

3. uefi-rs: Code Example: Hello World
Creating a no_std binary (executable)

#[entry]

1 #![no_main]
2 #![no_std]
3
4 use uefi::prelude::*;
5
6
7 fn main() -> Status {
8 Status::SUCCESS
9 }

37 / 45

3. uefi-rs: Code Example: Hello World
Creating a no_std binary (executable)

fn main() -> Status {
 Status::SUCCESS
}

1 #![no_main]
2 #![no_std]
3
4 use uefi::prelude::*;
5
6 #[entry]
7
8
9

37 / 45

3. uefi-rs: Code Example: Hello World
Creating a no_std binary (executable)

#[entry]

1 #![no_main]
2 #![no_std]
3
4 use uefi::prelude::*;
5
6
7 fn main() -> Status {
8 Status::SUCCESS
9 }

37 / 45

3. uefi-rs: Code Example: Hello World
Creating a no_std binary (executable)

#[unsafe(export_name = "efi_main")]
extern "efiapi" fn main(
 internal_image_handle: ::uefi::Handle,
 internal_system_table: *const ::core::ffi::c_void,
) -> uefi::Status {
 unsafe {
 ::uefi::boot::set_image_handle(internal_image_handle);
 ::uefi::table::set_system_table(internal_system_table.cast());
 }
 Status::SUCCESS
}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

37 / 45

3. uefi-rs: Code Example: Hello World
Creating a no_std binary (executable)

#[unsafe(export_name = "efi_main")] 1
 2 extern "efiapi" fn main(
 3 internal_image_handle: ::uefi::Handle,
 4 internal_system_table: *const ::core::ffi::c_void,
 5) -> uefi::Status {
 6 unsafe {
 7 ::uefi::boot::set_image_handle(internal_image_handle);
 8 ::uefi::table::set_system_table(internal_system_table.cast());
 9 }
10 Status::SUCCESS
11 }

37 / 45

3. uefi-rs: Code Example: Hello World
Creating a no_std binary (executable)

extern "efiapi" fn main(

) -> uefi::Status {

 1 #[unsafe(export_name = "efi_main")]
 2
 3 internal_image_handle: ::uefi::Handle,
 4 internal_system_table: *const ::core::ffi::c_void,
 5
 6 unsafe {
 7 ::uefi::boot::set_image_handle(internal_image_handle);
 8 ::uefi::table::set_system_table(internal_system_table.cast());
 9 }
10 Status::SUCCESS
11 }

37 / 45

3. uefi-rs: Code Example: Hello World
Creating a no_std binary (executable)

 internal_image_handle: ::uefi::Handle,
 internal_system_table: *const ::core::ffi::c_void,

 1 #[unsafe(export_name = "efi_main")]
 2 extern "efiapi" fn main(
 3
 4
 5) -> uefi::Status {
 6 unsafe {
 7 ::uefi::boot::set_image_handle(internal_image_handle);
 8 ::uefi::table::set_system_table(internal_system_table.cast());
 9 }
10 Status::SUCCESS
11 }

37 / 45

3. uefi-rs: Code Example: Hello World
Creating a no_std binary (executable)

 unsafe {
 ::uefi::boot::set_image_handle(internal_image_handle);
 ::uefi::table::set_system_table(internal_system_table.cast());
 }

 1 #[unsafe(export_name = "efi_main")]
 2 extern "efiapi" fn main(
 3 internal_image_handle: ::uefi::Handle,
 4 internal_system_table: *const ::core::ffi::c_void,
 5) -> uefi::Status {
 6
 7
 8
 9
10 Status::SUCCESS
11 }

37 / 45

3. uefi-rs: Code Example: Hello World
Creating a no_std binary (executable)

#[entry]

1 #![no_main]
2 #![no_std]
3
4 use uefi::prelude::*;
5
6
7 fn main() -> Status {
8 Status::SUCCESS
9 }

37 / 45

3. uefi-rs: Code Example: Hello World
Creating a no_std binary (executable)

fn main() -> Status {
 uefi::helpers::init().unwrap();
 info!("Hello world!");
 Status::SUCCESS
}

 1 #![no_main]
 2 #![no_std]
 3
 4 use log::info;
 5 use uefi::prelude::*;
 6
 7 #[entry]
 8
 9
10
11
12

37 / 45

3. uefi-rs: Code Example: Hello World
Creating a no_std binary (executable)

use core::time::Duration;

 boot::stall(Duration::from_secs(10));

 1 #![no_main]
 2 #![no_std]
 3
 4
 5 use log::info;
 6 use uefi::prelude::*;
 7
 8 #[entry]
 9 fn main() -> Status {
10 uefi::helpers::init().unwrap();
11 info!("Hello world!");
12
13 Status::SUCCESS
14 }

37 / 45

3. uefi-rs: Code Example: Reading File
#[entry]
fn main() -> Status {
 Status::SUCCESS
}

1
2
3
4

38 / 45

3. uefi-rs: Code Example: Reading File

 helpers::init().unwrap(); // enable `log`-crate

1 #[entry]
2 fn main() -> Status {
3
4 Status::SUCCESS
5 }

38 / 45

3. uefi-rs: Code Example: Reading File

 let sfs_proto = boot::get_image_file_system(boot::image_handle()).unwrap();

1 #[entry]
2 fn main() -> Status {
3 helpers::init().unwrap(); // enable `log`-crate
4
5 Status::SUCCESS
6 }

38 / 45

3. uefi-rs: Code Example: Reading File

 let mut fs = FileSystem::new(sfs_proto); // Abstraction similar to `std::fs`

1 #[entry]
2 fn main() -> Status {
3 helpers::init().unwrap(); // enable `log`-crate
4 let sfs_proto = boot::get_image_file_system(boot::image_handle()).unwrap();
5
6 Status::SUCCESS
7 }

38 / 45

3. uefi-rs: Code Example: Reading File

 for entry in fs.read_dir(cstr16!("EFI\\BOOT")).unwrap() {
 }

1 #[entry]
2 fn main() -> Status {
3 helpers::init().unwrap(); // enable `log`-crate
4 let sfs_proto = boot::get_image_file_system(boot::image_handle()).unwrap();
5 let mut fs = FileSystem::new(sfs_proto); // Abstraction similar to `std::fs`
6
7
8 Status::SUCCESS
9 }

38 / 45

3. uefi-rs: Code Example: Reading File

 for entry in fs.read_dir(cstr16!("EFI\\BOOT")).unwrap() {

 }

 1 #[entry]
 2 fn main() -> Status {
 3 helpers::init().unwrap(); // enable `log`-crate
 4 let sfs_proto = boot::get_image_file_system(boot::image_handle()).unwrap();
 5 let mut fs = FileSystem::new(sfs_proto); // Abstraction similar to `std::fs`
 6
 7 let entry = entry.unwrap();
 8 let kind = if entry.is_directory() { "dir" } else { "file" };
 9 info!("Found: {kind} {}", entry.file_name());
10
11 Status::SUCCESS
12 }

38 / 45

3. uefi-rs: Code Example: Reading File

 let entry = entry.unwrap();

 1 #[entry]
 2 fn main() -> Status {
 3 helpers::init().unwrap(); // enable `log`-crate
 4 let sfs_proto = boot::get_image_file_system(boot::image_handle()).unwrap();
 5 let mut fs = FileSystem::new(sfs_proto); // Abstraction similar to `std::fs`
 6 for entry in fs.read_dir(cstr16!("EFI\\BOOT")).unwrap() {
 7
 8 let kind = if entry.is_directory() { "dir" } else { "file" };
 9 info!("Found: {kind} {}", entry.file_name());
10 }
11 Status::SUCCESS
12 }

38 / 45

3. uefi-rs: Code Example: Reading File

 let kind = if entry.is_directory() { "dir" } else { "file" };

 1 #[entry]
 2 fn main() -> Status {
 3 helpers::init().unwrap(); // enable `log`-crate
 4 let sfs_proto = boot::get_image_file_system(boot::image_handle()).unwrap();
 5 let mut fs = FileSystem::new(sfs_proto); // Abstraction similar to `std::fs`
 6 for entry in fs.read_dir(cstr16!("EFI\\BOOT")).unwrap() {
 7 let entry = entry.unwrap();
 8
 9 info!("Found: {kind} {}", entry.file_name());
10 }
11 Status::SUCCESS
12 }

38 / 45

3. uefi-rs: Code Example: Reading File

 info!("Found: {kind} {}", entry.file_name());

 1 #[entry]
 2 fn main() -> Status {
 3 helpers::init().unwrap(); // enable `log`-crate
 4 let sfs_proto = boot::get_image_file_system(boot::image_handle()).unwrap();
 5 let mut fs = FileSystem::new(sfs_proto); // Abstraction similar to `std::fs`
 6 for entry in fs.read_dir(cstr16!("EFI\\BOOT")).unwrap() {
 7 let entry = entry.unwrap();
 8 let kind = if entry.is_directory() { "dir" } else { "file" };
 9
10 }
11 Status::SUCCESS
12 }

[INFO]: src/main.rs@165: Found: dir .
[INFO]: src/main.rs@165: Found: dir ..
[INFO]: src/main.rs@165: Found: file BOOTX64.EFI

38 / 45

3. uefi-rs: Code Example: Device Paths
1 let handles = boot::find_handles::<DevicePath>().unwrap();
2 for handle in handles.iter() {
3 }

39 / 45

3. uefi-rs: Code Example: Device Paths
let handles = boot::find_handles::<DevicePath>().unwrap();1

2 for handle in handles.iter() {
3 }

39 / 45

3. uefi-rs: Code Example: Device Paths

for handle in handles.iter() {
}

1 let handles = boot::find_handles::<DevicePath>().unwrap();
2
3

39 / 45

3. uefi-rs: Code Example: Device Paths

 let maybe_dvp = unsafe {

 };

 1 let handles = boot::find_handles::<DevicePath>().unwrap();
 2 for handle in handles.iter() {
 3
 4 boot::open_protocol::<DevicePath>(
 5 OpenProtocolParams { handle: *handle,
 6 agent: boot::image_handle(),
 7 controller: None, },
 8 OpenProtocolAttributes::GetProtocol,
 9)
10
11 // Pattern matching: Unwrap happy path or continue
12 let Ok(dvp) = maybe_dvp else { continue };
13 let string = dvp.to_string(DisplayOnly(true), AllowShortcuts(false)).unwrap();
14 info!("Device path: {}", string);
15 }

39 / 45

3. uefi-rs: Code Example: Device Paths

 boot::open_protocol::<DevicePath>(
 OpenProtocolParams { handle: *handle,

)

 1 let handles = boot::find_handles::<DevicePath>().unwrap();
 2 for handle in handles.iter() {
 3 let maybe_dvp = unsafe {
 4
 5
 6 agent: boot::image_handle(),
 7 controller: None, },
 8 OpenProtocolAttributes::GetProtocol,
 9
10 };
11 // Pattern matching: Unwrap happy path or continue
12 let Ok(dvp) = maybe_dvp else { continue };
13 let string = dvp.to_string(DisplayOnly(true), AllowShortcuts(false)).unwrap();
14 info!("Device path: {}", string);
15 }

39 / 45

3. uefi-rs: Code Example: Device Paths

 // Pattern matching: Unwrap happy path or continue
 let Ok(dvp) = maybe_dvp else { continue };

 1 let handles = boot::find_handles::<DevicePath>().unwrap();
 2 for handle in handles.iter() {
 3 let maybe_dvp = unsafe {
 4 boot::open_protocol::<DevicePath>(
 5 OpenProtocolParams { handle: *handle,
 6 agent: boot::image_handle(),
 7 controller: None, },
 8 OpenProtocolAttributes::GetProtocol,
 9)
10 };
11
12
13 let string = dvp.to_string(DisplayOnly(true), AllowShortcuts(false)).unwrap();
14 info!("Device path: {}", string);
15 }

39 / 45

3. uefi-rs: Code Example: Device Paths

 let string = dvp.to_string(DisplayOnly(true), AllowShortcuts(false)).unwrap();

1 let handles = boot::find_handles::<DevicePath>().unwrap();
2 for handle in handles.iter() {
3 let dvp = /* .. */;
4
5 info!("Device path: {}", string);
6 }

39 / 45

3. uefi-rs: Code Example: Device Paths

 info!("Device path: {}", string);

1 let handles = boot::find_handles::<DevicePath>().unwrap();
2 for handle in handles.iter() {
3 let dvp = /* .. */;
4 let string = dvp.to_string(DisplayOnly(true), AllowShortcuts(false)).unwrap();
5
6 }

1 [INFO]: src/main.rs@178: Device path: Fv(7CB8BDC9-F8EB-4F34-AAEA-3EE4AF6516A1)
2 [INFO]: src/main.rs@178: Device path: MemoryMapped(0xB,0x1FEDC000,0x1FF5FFFF)
3 [INFO]: src/main.rs@178: Device path: PciRoot(0x0)
4 [INFO]: src/main.rs@178: Device path: VenHw(EBF8ED7C-0DD1-4787-84F1-F48D537DCACF)
5 [INFO]: src/main.rs@178: Device path: VenHw(28A03FF4-12B3-4305-A417-BB1A4F94081E)
6 [INFO]: src/main.rs@178: Device path: VenHw(2A46715F-3581-4A55-8E73-2B769AAA30C5)
7 [INFO]: src/main.rs@178: Device path: VenHw(D9DCC5DF-4007-435E-9098-8970935504B2)
8 [INFO]: src/main.rs@178: Device path: PciRoot(0x0)/Pci(0x0,0x0)

39 / 45

3. uefi-rs: How to Test? How to Run?

40 / 45

3. uefi-rs: How to Test? How to Run?
On real hardware, i.e., developer laptop

40 / 45

3. uefi-rs: How to Test? How to Run?
On real hardware, i.e., developer laptop

In a VM

40 / 45

3. uefi-rs: How to Test? How to Run?
On real hardware, i.e., developer laptop

In a VM

e.g., QEMU or Cloud Hypervisor with OVMF firmware

40 / 45

3. uefi-rs: How to Test? How to Run?
On real hardware, i.e., developer laptop

In a VM

e.g., QEMU or Cloud Hypervisor with OVMF firmware

OVMF is an EDK2 build for Virtual Machines

40 / 45

4. Code

GitHub: phip1611/uefi-systemd-chainloader

41 / 45

https://github.com/phip1611/uefi-systemd-chainloader
https://github.com/phip1611/uefi-systemd-chainloader

5. Summary & Conclusion

42 / 45

5. Summary

43 / 45

5. Summary
UEFI simplifies and unifies some things

43 / 45

5. Summary
UEFI simplifies and unifies some things

The domain is complex, and so is UEFI

43 / 45

5. Summary
UEFI simplifies and unifies some things

The domain is complex, and so is UEFI

systemd boot, GRUB, the Windows bootloader → EFI applications

43 / 45

5. Summary
UEFI simplifies and unifies some things

The domain is complex, and so is UEFI

systemd boot, GRUB, the Windows bootloader → EFI applications

To get started: uefi crate; example project; run in VM

43 / 45

5. Summary
UEFI simplifies and unifies some things

The domain is complex, and so is UEFI

systemd boot, GRUB, the Windows bootloader → EFI applications

To get started: uefi crate; example project; run in VM

github.com/rust-osdev/uefi-rs

43 / 45

https://github.com/rust-osdev/uefi-rs

5. Summary
UEFI simplifies and unifies some things

The domain is complex, and so is UEFI

systemd boot, GRUB, the Windows bootloader → EFI applications

To get started: uefi crate; example project; run in VM

github.com/rust-osdev/uefi-rs

crates.io/crates/uefi

43 / 45

https://github.com/rust-osdev/uefi-rs
https://crates.io/crates/uefi

5. Summary
UEFI simplifies and unifies some things

The domain is complex, and so is UEFI

systemd boot, GRUB, the Windows bootloader → EFI applications

To get started: uefi crate; example project; run in VM

github.com/rust-osdev/uefi-rs

crates.io/crates/uefi

docs.rs/uefi

43 / 45

https://github.com/rust-osdev/uefi-rs
https://crates.io/crates/uefi
https://docs.rs/uefi

5. UEFI Criticism

44 / 45

5. UEFI Criticism
Spec sometimes not specific enough

44 / 45

5. UEFI Criticism
Spec sometimes not specific enough

Implementations are often buggy (derived from EDK2)

44 / 45

5. UEFI Criticism
Spec sometimes not specific enough

Implementations are often buggy (derived from EDK2)

Overly complex and inconsistent

44 / 45

5. UEFI Criticism
Spec sometimes not specific enough

Implementations are often buggy (derived from EDK2)

Overly complex and inconsistent

Most vendors add closed-source additions

44 / 45

5. UEFI Criticism
Spec sometimes not specific enough

Implementations are often buggy (derived from EDK2)

Overly complex and inconsistent

Most vendors add closed-source additions

Tries to be a modern OS-like environment but sticks to decade old concepts

44 / 45

5. UEFI Criticism
Spec sometimes not specific enough

Implementations are often buggy (derived from EDK2)

Overly complex and inconsistent

Most vendors add closed-source additions

Tries to be a modern OS-like environment but sticks to decade old concepts

A single global address space for everything

44 / 45

5. UEFI Criticism
Spec sometimes not specific enough

Implementations are often buggy (derived from EDK2)

Overly complex and inconsistent

Most vendors add closed-source additions

Tries to be a modern OS-like environment but sticks to decade old concepts

A single global address space for everything

No real multitasking

44 / 45

5. UEFI Criticism
Spec sometimes not specific enough

Implementations are often buggy (derived from EDK2)

Overly complex and inconsistent

Most vendors add closed-source additions

Tries to be a modern OS-like environment but sticks to decade old concepts

A single global address space for everything

No real multitasking

Limited error handling and debugging

44 / 45

Thank you for your
attention!

